The stability loss of a locally curved double-walled carbon nanotube in visco-elastic matrix

Author(s):  
Fatma Çoban Kayıkçı ◽  
Reşat Köşker

In the current study, stability loss investigation is carried out for a viscoelastic medium containing a double-walled carbon nanotube with local curvature. This research has been carried out using the three dimensional linearized stability theory (TDLTS) within the framework of the piecewise-homogeneous body model. In this case, it is supposed that the carbon nanotube (CNT) has an insignificant initial local defect, and the increase of this defect with the flow of time is examined. Moreover, it is accepted as the criterion for determining the loss of stability that local curvature of the CNT starts to grow indefinitely. The values of the critical time and critical force are obtained from this criterion. In addition, van der Waals forces between the inner surface of the outer tube of the CNT and the outer surface of the inner tube of the CNT were considered. The fractional-exponential Rabotnov operator defines the composite material’s viscoelasticity properties. It is expected that the results obtained from this paper may be a useful guide in applications related to exhibiting the mechanical behavior of the composite material under consideration. Therefore, the effects of viscoelasticity towards composite materials containing a locally curved DWCNT and the limits to be considered in the production of this material are obtained.

2019 ◽  
Vol 81 (1) ◽  
pp. 30-39
Author(s):  
M. I. Karyakin ◽  
L. P. Obrezkov

The problem of equilibrium and stability of a hollow cylinder subjected to simultaneous uniaxial tension/compression and inflation is considered within the framework of the three-dimensional nonlinear theory of elasticity. To describe the mechanical properties of the material of the cylinder five-constant Murnaghan model is used. By the semi-inverse method the three-dimensional problem is reduced to the study of a nonlinear boundary value problem for an ordinary second-order differential equation. For most sets of material parameters known from the literature, the presence of a falling section in the stretching/inflation diagram, indicating the possible existence of instability zones even in the area of tensile stresses, has been found numerically. The stability analysis was carried out using a bifurcation approach based on linearization of the equilibrium equations in the neighborhood of the constructed solution by means of the method of imposing a small strain on a finite one. The value of a particular deformation characteristic, for which non-trivial solutions of a homogeneous boundary-value problem exist for the equations of neutral equilibrium obtained in the linearization process, was identified with the critical value of the loading parameter, i.e. value at which the system loses stability. As a rule, the coefficient of stretching/shortening of the cylinder and the coefficient of increase/decrease of its internal or external radius were chosen as such parameters. On the plane of the above-mentioned deformation characteristics the areas of stability under tension and compression, as well as under compression by external force and inflation by internal pressure, are constructed. The forms of possible of stability loss depending on the type of stress state are constructed, and the effect on the stability of material and geometric parameters is studied.


1993 ◽  
Vol 60 (2) ◽  
pp. 506-513 ◽  
Author(s):  
G. A. Kardomateas

The stability of equilibrium of a transversely isotropic thick cylindrical shell under axial compression is investigated. The problem is treated by making appropriate use of the three-dimensional theory of elasticity. The results are compared with the critical loads furnished by classical shell theories. For the isotropic material cases considered, the elasticity approach predicts a lower critical load than the shell theories, the percentage reduction being larger with increasing thickness. However, both the Flu¨gge and Danielson and Simmonds theories predict critical loads much closer to the elasticity value than the Donnell theory. Moreover, the values of n, m (number of circumferential waves and number of axial half-waves, respectively, at the critical point) for both the elasticity, and the Flu¨gge and the Danielson and Simmonds theories, show perfect agreement, unlike the Donnell shell theory.


Author(s):  
Ivan Okhten ◽  
Olha Lukianchenko

Performed analysis of the initial geometric imperfections influence on the stability of the open C-shaped bars. Test tasks were solved in MSC Nastran, which is based on the finite element method. Imperfections are given in different formulations: the general stability loss of an ideal bar, of wavy bulging of walls and shelves, of deplanation of a bar. To model imperfections, has been developed a program which for the formation of new coordinates of the nodes of the "deformed" model, the components of a vector similar to the form of stability loss are added to the corresponding coordinates of the middle surface of the bar. In this way, you can set initial imperfections in the forms of stability loss of the bar with different amplitude. Researches made with different values of the imperfection amplitude and eccentricity of applied efforts. All tasks are performed in linear and nonlinear staging. The conclusion is made regarding the influence of initial imperfections form and imperfection amplitude on the critical force in nonlinear calculations. It was found that the most affected are imperfections, which are given in the form of total loss of stability. It was revealed the influence of the imperfection amplitude on the magnitude of the critical force for such imperfections. The influence of imperfections amplitude given in the form of wavy bulging walls and in the form of deplanations is not affected on the value of the critical force.


Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Langmuir ◽  
2007 ◽  
Vol 23 (11) ◽  
pp. 6352-6357 ◽  
Author(s):  
Xiaoge Hu ◽  
Tie Wang ◽  
Liang Wang ◽  
Shaojun Guo ◽  
Shaojun Dong

2021 ◽  
Vol 2 (7) ◽  
pp. 2408-2418
Author(s):  
Le Wan ◽  
Cong Deng ◽  
Ze-Yong Zhao ◽  
Hai-Bo Zhao ◽  
Yu-Zhong Wang

Titanium oxide-carbon nanotube hybrids may efficiently promote the stability of nature rubber under extreme frictional conditions.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1510 ◽  
Author(s):  
Mohammad Ehsan Taghavizadeh Yazdi ◽  
Simin Nazarnezhad ◽  
Seyed Hadi Mousavi ◽  
Mohammad Sadegh Amiri ◽  
Majid Darroudi ◽  
...  

The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.


2021 ◽  
Vol 202 ◽  
pp. 105964
Author(s):  
Xiaotong Yang ◽  
Yibo Gao ◽  
Zhenzhen Zhao ◽  
Ye Tian ◽  
Xianggui Kong ◽  
...  

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
András L. Szabó ◽  
Bitan Roy

Abstract We compute the effects of strong Hubbardlike local electronic interactions on three-dimensional four-component massless Dirac fermions, which in a noninteracting system possess a microscopic global U(1) ⊗ SU(2) chiral symmetry. A concrete lattice realization of such chiral Dirac excitations is presented, and the role of electron-electron interactions is studied by performing a field theoretic renormalization group (RG) analysis, controlled by a small parameter ϵ with ϵ = d−1, about the lower-critical one spatial dimension. Besides the noninteracting Gaussian fixed point, the system supports four quantum critical and four bicritical points at nonvanishing interaction couplings ∼ ϵ. Even though the chiral symmetry is absent in the interacting model, it gets restored (either partially or fully) at various RG fixed points as emergent phenomena. A representative cut of the global phase diagram displays a confluence of scalar and pseudoscalar excitonic and superconducting (such as the s-wave and p-wave) mass ordered phases, manifesting restoration of (a) chiral U(1) symmetry between two excitonic masses for repulsive interactions and (b) pseudospin SU(2) symmetry between scalar or pseudoscalar excitonic and superconducting masses for attractive interactions. Finally, we perturbatively study the effects of weak rotational symmetry breaking on the stability of various RG fixed points.


Sign in / Sign up

Export Citation Format

Share Document