Parametric analysis of topologically optimized mechanical member considering dynamic loading

Author(s):  
G Lakshmi Srinivas ◽  
Arshad Javed

The optimal topology and its performance in dynamic loading situations result in discontinue function corresponding to the input factors such as volume fraction, thickness, material property, and loading conditions. In a realist scenario, the performance prediction becomes erroneous and challenging for the components under dynamic loading conditions with uncertainties. The conventional closed-form deterministic approaches are complicated for these problems. Here, a method is presented to establish the relative influence and function relationship of the input factors with the performance values, including controllable and non-controllable uncertainties. The design of experiment approach is used to apply full factorial design with Taguchi’s orthogonal array; performances of the optimal topologies are considered responses. The non-uniform topology generation method is applied based on the deflection threshold value to generate topologies for dynamic conditions. A dynamic model of the manipulator-link is developed to apply boundary conditions and provide performance values: compliance, deflection, Stress, and energy consumption values. Statistical techniques such as the analysis-of-mean (ANOM), analysis-of-variance (ANOVA), signal-to-noise-ratio (SNR), and mean performance values are employed to observe the significance of input factors and generate equivalent preformation relation. From ANOM and ANOVA, all input parameters show mutual interaction; force is observed as the most significant factor. From SNR values, experimental combination number 9,9,6,1 is observed as the most robust for compliance (21.13), deflection (43.93), Stress (−16.64), and energy consumption (12.05). Similarly, at the same combinations, the mean performance values are minimum and coefficient of determination (R2) percentages of the model are 94.64%, 96.93%, 73.69%, and 95.14%.

Author(s):  
Satvir Singh

Steganography is the special art of hidding important and confidential information in appropriate multimedia carrier. It also restrict the detection of  hidden messages. In this paper we proposes steganographic method based on dct and entropy thresholding technique. The steganographic algorithm uses random function in order to select block of the image where the elements of the binary sequence of a secret message will be inserted. Insertion takes place at the lower frequency  AC coefficients of the  block. Before we insert the secret  message. Image under goes dc transformations after insertion of the secret message we apply inverse dc transformations. Secret message will only be inserted into a particular block if  entropy value of that particular block is greater then threshold value of the entropy and if block is selected by the random function. In  Experimental work we calculated the peak signal to noise ratio(PSNR), Absolute difference , Relative entropy. Proposed algorithm give high value of PSNR  and low value of Absolute difference which clearly indicate level of distortion in image due to insertion of secret message is reduced. Also value of  relative entropy is close to zero which clearly indicate proposed algorithm is sufficiently secure. 


Author(s):  
S. Thabasu Kannan ◽  
S. Azhagu Senthil

Now-a-days watermarking plays a pivotal role in most of the industries for providing security to their own as well as hired or leased data. This paper its main aim is to study the multiresolution watermarking algorithms and also choosing the effective and efficient one for improving the resistance in data compression. Computational savings from such a multiresolution watermarking framework is obvious. The multiresolutional property makes our watermarking scheme robust to image/video down sampling operation by a power of two in either space or time. There is no common framework for multiresolutional digital watermarking of both images and video. A multiresolution watermarking based on the wavelet transformation is selected in each frequency band of the Discrete Wavelet Transform (DWT) domain and therefore it can resist the destruction of image processing.   The rapid development of Internet introduces a new set of challenging problems regarding security. One of the most significant problems is to prevent unauthorized copying of digital production from distribution. Digital watermarking has provided a powerful way to claim intellectual protection. We proposed an idea for enhancing the robustness of extracted watermarks. Watermark can be treated as a transmitted signal, while the destruction from attackers is regarded as a noisy distortion in channel.  For the implementation, we have used minimum nine coordinate positions. The watermarking algorithms to be taken for this study are Corvi algorithm and Wang algorithm. In all graph, we have plotted X axis as peak signal to noise ratio (PSNR) and y axis as Correlation with original watermark. The threshold value ά is set to 5. The result is smaller than the threshold value then it is feasible, otherwise it is not.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1999
Author(s):  
Guanyong Sun ◽  
Bin Li ◽  
Hanjie Guo ◽  
Wensheng Yang ◽  
Shaoying Li ◽  
...  

Carbon included in coke and coal was used as a reduction agent and fuel in blast furnace (BF) ironmaking processes, which released large quantities of carbon dioxide (CO2). Minimizing the carbon consumption and CO2 output has always the goal of ironmaking research. In this paper, the reduction reactions of iron oxides by carbon, the gasification reaction of carbon by CO2, and the coupling reactions were studied by thermodynamic functions, which were derived from isobaric specific heat capacity. The reaction enthalpy at 298 K could not represent the heat value at the other reaction temperature, so the certain temperature should be confirmed by Gibbs frees energy and gas partial pressure. Based on Hess’ law, the energy consumption of the ironmaking process by carbon was calculated in detail. The decrease in the reduction temperature of solid metal iron has been beneficial in reducing the sensible heat required. When the volume ratio of CO to CO2 in the top gas of the furnace was given as 1.1–1.5, the coupling parameters of carbon gasification were 1.06–1.28 for Fe2O3, 0.71–0.85 for Fe3O4, 0.35–0.43 for FeO, respectively. With the increase in the coupling parameters, the volume fraction of CO2 decreased, and energy consumption and CO2 output increased. The minimum energy consumption and CO2 output of liquid iron production were in the reduction reactions with only CO2 generated, which were 9.952 GJ/t and 1265.854 kg/t from Fe2O3, 9.761 GJ/t and 1226.799 kg/t from Fe3O4, 9.007 GJ/t and 1107.368 kg/t from FeO, respectively. Compared with the current energy consumption of 11.65 GJ/t hot metal (HM) and CO2 output of 1650 kg/tHM of BF, the energy consumption and CO2 of ironmaking by carbon could reach lower levels by decreasing the coupled gasification reactions, lowering the temperature needed to generate solid Fe and adjusting the iron oxides to improve the iron content in the raw material. This article provides a simplified calculation method to understand the limit of energy consumption and CO2 output of ironmaking by carbon reduction iron oxides.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Manuel César Martí-Calatayud ◽  
Mario Sancho-Cirer Poczatek ◽  
Valentín Pérez-Herranz

Electrodialysis (ED) has been recently introduced in a variety of processes where the recovery of valuable resources is needed; thus, enabling sustainable production routes for a circular economy. However, new applications of ED require optimized operating modes ensuring low energy consumptions. The application of pulsed electric field (PEF) electrodialysis has been demonstrated to be an effective option to modulate concentration polarization and reduce energy consumption in ED systems, but the savings in energy are usually attained by extending the operating time. In the present work, we conduct a comprehensive simulation study about the effects of PEF signal parameters on the time and energy consumption associated with ED processes. Ion transport of NaCl solutions through homogeneous cation-exchange membranes is simulated using a 1-D model solved by a finite-difference method. Increasing the pulse frequency up to a threshold value is effective in reducing the specific energy consumption, with threshold frequencies increasing with the applied current density. Varying the duty cycle causes opposed effects in the time and energy usage needed for a given ED operation. More interestingly, a new mode of PEF functions with the application of low values of current during the relaxation phases has been investigated. This novel PEF strategy has been demonstrated to simultaneously improve the time and the specific energy consumption of ED processes.


2018 ◽  
Vol 15 (6) ◽  
pp. 771-785
Author(s):  
Hongbin Zhao ◽  
Yu Cao ◽  
Chang Liu ◽  
Xiang Qi

PurposeThe purpose of this paper is to investigate the performance of coke oven gas (COG)-combined cooling, heating and power (CCHP) system and to mainly focus on studying the influence of the environmental conditions, operating conditions and gas conditions on the performance of the system and on quantifying the distribution of useful energy loss and the saving potential of the integrated system changing with different parameters.Design/methodology/approachThe working process of COG-CCHP was simulated through the establishment of system flow and thermal analysis mathematical model. Using exergy analysis method, the COG-CCHP system’s energy consumption status and the performance changing rules were analyzed.FindingsThe results showed that the combustion chamber has the largest exergy loss among the thermal equipments. Reducing the environmental temperature and pressure can improve the entire system’s reasonable degree of energy. Higher temperature and pressure improved the system’s perfection degree of energy use. Relatively high level of hydrogen and low content of water in COG and an optimal range of CH4volume fraction between 35 per cent and 46 per cent are required to ensure high exergy efficiency of this integration system.Originality/valueThis paper proposed a CCHP system with the utilization of coke oven gas (COG) and quantified the distribution of useful energy loss and the saving potential of the integrated system under different environmental, operating and gas conditions. The weak links of energy consumption within the system were analyzed, and the characteristics of COG in this way of using were illustrated. This study can provide certain guiding basis for further research and development of the CCHP system performance.


Author(s):  
Jason P. Halloran ◽  
Anthony J. Petrella ◽  
Paul J. Rullkoetter

The success of current total knee replacement (TKR) devices is contingent on the kinematics and contact mechanics during in vivo activity. Indicators of potential clinical performance of total joint replacement devices include contact stress and area due to articulations, and tibio-femoral and patello-femoral kinematics. An effective way of evaluating these parameters during the design phase or before clinical use is via computationally efficient computer models. Previous finite element (FE) knee models have generally been used to determine contact stresses and/or areas during static or quasi-static loading conditions. The majority of knee models intended to predict relative kinematics have not been able to determine contact mechanics simultaneously. Recently, however, explicit dynamic finite element methods have been used to develop dynamic models of TKR able to efficiently determine joint and contact mechanics during dynamic loading conditions [1,2]. The objective of this research was to develop and validate an explicit FE model of a TKR which includes tibio-femoral and patello-femoral articulations and surrounding soft tissues. The six degree-of-freedom kinematics, kinetics and polyethylene contact mechanics during dynamic loading conditions were then predicted during gait simulation.


2001 ◽  
Vol 280 (2) ◽  
pp. H674-H683 ◽  
Author(s):  
Gregory L. Brower ◽  
Joseph S. Janicki

We previously reported an approximately 50% incidence of rats with symptoms of congestive heart failure (CHF) at 8 wk postinfrarenal aorto-caval fistula. However, it was not clear whether compensatory ventricular remodeling could continue beyond 8 wk or whether the remaining animals would have developed CHF or died. Therefore, the intent of this study was to complete the characterization of this model of sustained volume overload by determining the morbidity and mortality and the temporal response of left ventricular (LV) remodeling and function beyond 8 wk. The findings demonstrate an upper limit to LV hypertrophy and substantial increases in LV volume and compliance, matrix metalloproteinase activity, and collagen volume fraction associated with the development of CHF. There was an 80% incidence of morbidity and mortality following 21 wk of chronic volume overload. These findings indicate that the development of CHF is triggered by marked ventricular dilatation and increased compliance occurring once the myocardial hypertrophic response is exhausted.


Sign in / Sign up

Export Citation Format

Share Document