Cooperative control of regenerative braking and hydraulic braking of an electrified passenger car

Author(s):  
Junzhi Zhang ◽  
Chen Lv ◽  
Jinfang Gou ◽  
Decong Kong

With the aims of regeneration efficiency and brake comfort, three different control strategies, namely the maximum-regeneration-efficiency strategy, the good-pedal-feel strategy and the coordination strategy for regenerative braking of an electrified passenger car are researched in this paper. The models of the main components related to the regenerative brake and the frictional blending brake of the electric passenger car are built in MATLAB/Simulink. The control effects and regeneration efficiencies of the control strategies in a typical deceleration process are simulated and analysed. Road tests under normal deceleration braking and an ECE driving cycle are carried out. The simulation and road test results show that the maximum-regeneration-efficiency strategy, which causes issues on brake comfort and safety, could hardly be utilized in the regenerative braking system adopted. The good-pedal-feel strategy and coordination strategy are advantageous over the first strategy with respect to the brake comfort and regeneration efficiency. The fuel economy enhanced by the regenerative braking system developed is more than 25% under the ECE driving cycle.

2014 ◽  
Vol 898 ◽  
pp. 873-877 ◽  
Author(s):  
Jian Wei Cai ◽  
Liang Chu ◽  
Zi Cheng Fu ◽  
Yan Bo Wang ◽  
Wen Hui Li

Based on the traditional hydraulic unit of ESC, Jilin University developed a braking energy recovery system of uniaxial decoupled. A first-order hysteresis filtering method with filtering time factor adaptively corrected was used to calculate driver's braking demand based on pressure of the master cylinder. A series of fixed partition coefficient control strategy was developed, coordinated control of electrical regenerative braking and hydraulic braking was carried out. Vehicle test was carried out. Vehicle test results show that the brake pedal travel simulator and the braking control strategies can improve the energy recovery, and ensure that the brake pedal feel is consistent with the traditional vehicle.


2020 ◽  
Vol 8 (1) ◽  
pp. 105-114
Author(s):  
Nityam P. Oza ◽  
◽  
Pravin P. Rathod ◽  

Recently researchers are focus on evaluation of hydraulic regenerative braking systems for improving fuel economy and reducing pollutant emissions. Present work is oriented to study effects of variation in vehicle speed at braking, accumulator initial pressure and pump displacement on regeneration efficiency of hydraulic regenerative braking system (HRBS) on the school van conveyance in Vadodara city. The results show that the HRBS regeneration efficiency improves between 1.7 to 10% with reduction in initial pressure from 110 to 90bar. Increase in pump displacement from 16 LPM to 23 LPM results in rise in regeneration efficiency of the HRBS between2.6 to 16.7%. While increasing initial speed at braking from 20 to 35 KMPH, regeneration efficiency of the HRBS system rises by 48%. This is the maximum rise in regeneration efficiency while varying the initial braking speed.


Author(s):  
Yang Yang ◽  
Jiahang Zou ◽  
Y. Yang ◽  
Datong Qin

In order to solve the limitations and complexity of a pressure coordinated control system for hybrid regenerative braking, a new pressure coordinated control system applicable for a regenerative braking system of hybrid electric vehicles is proposed in this paper based on an appropriate transformation on a traditional hydraulic braking system equipped with an antilock braking system (ABS). The system can realize regenerative braking and traditional ABS braking simultaneously. It also has greatly improved driver's brake pedal feel. The system model has been simulated and analyzed based on AMESim-simulink cosimulation. The simulation results show the effectiveness and feasibility of the system, which lay the foundation for design and optimization of the regenerative braking system.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jiankun Peng ◽  
Hongwen He ◽  
Wei Liu ◽  
Hongqiang Guo

This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.


2014 ◽  
Vol 543-547 ◽  
pp. 1405-1408 ◽  
Author(s):  
Jian Wei Cai ◽  
Liang Chu ◽  
Zi Cheng Fu ◽  
Li Peng Ren

A design of regenerative braking system (RBS) for a pure electric bus was presented in this paper. A design of regenerative braking system for a pure electric bus was presented in this paper The control of regenerative braking was achieved by Pneumatic ABS and improve braking energy recovery under the premise of ensure braking performance. Regenerative braking control algorithm was mainly composed of two parts for the identification of the drivers intention and the brake force distribution. The regenerative brake control model was built in the matlab/simulink environment, rapid prototyping control was achieved by Autobox and vehicle test was carried on. Result shows that the control strategies can effectively make the pneumatic brake system and motor brake system work harmoniously.


2014 ◽  
Vol 494-495 ◽  
pp. 214-218
Author(s):  
Jian Wei Cai ◽  
Liang Chu ◽  
Wen Ruo Wei ◽  
Yong Sheng Zhang ◽  
Wen Hui Li

Based on the analysis the theoretical of regenerative braking and energy flow of the pure electric vehicle, the main influence factors of braking energy recovery were obtained. Ignoring the energy loss and the efficiency of system components as well as the response delay of the hydraulic braking system, two different regenerative braking control strategies were established without regard to the braking force distribution restrictions of the relevant brake laws. The simulation model was built on MATLAB/Simulink platform to analysis the effect of control strategies, vehicle mass and driving cycle for pure electric vehicle braking energy recovery. It was guidance for the development of pure electric vehicle braking energy recovery control strategy.


Author(s):  
Yuzhuo Tai ◽  
Jian Song ◽  
Liangyao Yu ◽  
Shengnan Fang ◽  
Truong Sinh Nguyen

Regenerative braking of EV (electric vehicle) can enhance fuel efficiency to a great extent in urban areas. In addition, transmission plays a great role on the vehicle fuel economy and comfort and there are some research focus on the multi-speed transmission on EV. However, only limited number of scholars discussed about the influence of multi-speed transmission system on regenerative braking system. This paper focus on the effects of Electric Vehicle equipped with a Two-speed Uninterrupted Mechanical Transmission., which consist of a set of planetary gear, band brake and friction clutch. The transmission is capable of achieving seamless downshift which indicates that it can still transfer torque while downshifting. At the same time, as traction interruption of shift exerted an influence on the comfort during brake, this article put forward with a cooperative control algorithm considering the real response of electrohydraulic braking system in order to compensate the traction interruption and established an dynamic simulation model to testify the algorithm. The transmission dynamic model is developed by utilizing Euler-Lagrange equations to derive the motion while the other models are some simplified models. The whole model is applied by using the SimDriveline library of the MATLAB/Simulink. The simulation results of EV which commit a downshift while brake and the EV keep the gear are compared at the last demonstrate that the downshift strategy can save more energy without excessive oscillations.


Author(s):  
Debasish Adhikary ◽  
Muhammad Ziaur Rahman ◽  
Md. Minal Nahin ◽  
Muhammed Soyeb Bin Abdullah

During braking an automotive, all the kinetic energy is wasted in the form of energy due to braking, energy due to air resistance and energy due to rolling resistance. In the present literature a method has been developed to recover the energy. A fly-wheel mechanism has been used for this purpose. Instead of accelerating the automobile, the recovered energy is used to drive an air compressor used in pneumatic braking systems. The recovery process and the use of the energy has been investigated through simulation using SOLIDWORKS. The system has been applied to some available driving cycles like NEDC, Artemis cycle, FTP-75 cycle, 10–15 mode Japanese driving cycle, WLTC cycle to find out the most suitable driving cycle for the developed system. The corresponding results have been presented and are found quite reasonable. It is found that about 12% of the total energy consumed in a typical vehicle is spent in driving the compressor. So by using the mechanism represented here, this energy can be saved and fuel efficiency can be increased.


Author(s):  
Rafael Rivelino da Silva Bravo ◽  
Artur Tozzi C Gama ◽  
Amir Antonio Martins Oliveira ◽  
Victor Juliano De Negri

Author(s):  
Lingying Zhao ◽  
Min Ye ◽  
Xinxin Xu

To address the comfort of an electric vehicle, a coupling mechanism between mechanical friction braking and electric regenerative braking was studied. A cooperative braking system model was established, and comprehensive simulations and system optimizations were carried out. The performance of the cooperative braking system was analyzed. The distribution of the braking force was optimized by an intelligent method, and the distribution of a braking force logic diagram based on comfort was proposed. Using an intelligent algorithm, the braking force was distributed between the two braking systems and between the driving and driven axles. The experiment based on comfort was carried out. The results show that comfort after optimization is improved by 76.29% compared with that before optimization by comparing RMS value in the time domain. The reason is that the braking force distribution strategy based on the optimization takes into account the driver’s braking demand, the maximum braking torque of the motor, and the requirements of vehicle comfort, and makes full use of the braking torque of the motor. The error between simulation results and experimental results is 5.13%, which indicates that the braking force’s distribution strategy is feasible.


Sign in / Sign up

Export Citation Format

Share Document