Effect of tire slip losses on the energy demand and fuel consumption of a light-duty vehicle

Author(s):  
Stefano d’Ambrosio ◽  
Roberto Vitolo

The contribution of the tire-road slip of traction wheels to the total resistance opposing the motion of a light-duty commercial vehicle has been investigated through the simulation of several homologation and custom driving cycles. The calculation of the contribution of the tire slip losses was based on the estimation of the longitudinal tire slip, by means of Pacejka’s MF5.2 tire model. In this work, the computational steps required to evaluate this contribution were implemented in a previously developed fuel consumption simulation tool. Simulations were performed under several vehicle loading conditions and tire inflation pressures on traction and non-traction wheels, and considering different tire-road adherence conditions, in order to obtain a characterization of the tire slip losses over a wide range of working conditions. An analysis of the results shows that, although the contribution of tire slip losses to the total vehicle energy demand and fuel consumption may be relevant – especially under low-load, low adherence conditions – the sensitivity of the average on-cycle vehicle energy/fuel consumption to changes in the tire inflation pressure is only affected slightly by tire slip losses. Therefore, tire slip losses can be neglected in practice, when the aim of a simulation is to optimize the tire pressure to achieve average vehicle working conditions over a driving cycle.

2020 ◽  
Vol 13 (4) ◽  
pp. 102-113
Author(s):  
Loay M. Mubarak ◽  
Ahmed Al-Samari

This manuscript instrumented two light-duty passenger cars to construct real-world driving cycles for the Baghdad-Basrah highway road in Iraq using a data logger. The recorded data is conducted to obtain typical speed profiles for each vehicle. Each of the recruited vehicles is modelized using Advanced Vehicle Simulator and conducted on the associated created driving cycle to investigate fuel economy and analyze performance. Moreover, to inspect the influence of driving behavior on fuel consumption and emissions, the simulation process is re-implemented by substituting the conducted real-world driving cycle. The analyses are done for the first and second stages of simulation predictions to explore the fuel-penalty of aggressive driving behavior. The analysis for substitution predictions showed that fuel consumption could be reduced by 12.8% due to conducting vehicle under the more consistent real-world driving cycle. However, conducting vehicle under the more aggressive one would increase fuel consumption by 14.6%. The associated emissions change prediction due to the substitution is also achieved and presented.


Author(s):  
Saeed Vasebi ◽  
Yeganeh M. Hayeri ◽  
Constantine Samaras ◽  
Chris Hendrickson

Gasoline is the main source of energy used for surface transportation in the United States. Reducing fuel consumption in light-duty vehicles can significantly reduce the transportation sector’s impact on the environment. Implementation of emerging automated technologies in vehicles could result in fuel savings. This study examines the effect of automated vehicle systems on fuel consumption using stochastic modeling. Automated vehicle systems examined in this study include warning systems such as blind spot warning, control systems such as lane keeping assistance, and information systems such as dynamic route guidance. We have estimated fuel savings associated with reduction of accident and non-accident-related congestion, aerodynamic force reduction, operation load, and traffic rebound. Results of this study show that automated technologies could reduce light-duty vehicle fuel consumption in the U.S. by 6% to 23%. This reduction could save $60 to $266 annually for the owners of vehicles equipped with automated technologies. Also, adoption of automated vehicles could benefit all road users (i.e., conventional vehicle drivers) up to $35 per vehicle annually (up to $6.2 billion per year).


Author(s):  
Qing Li ◽  
Fengxiang Qiao ◽  
Lei Yu ◽  
Shuyan Chen ◽  
Tiezhu Li

The MOVES is a tool to estimate on- and off-road emissions, in which 23 operating mode identification bins were defined based on vehicles’ specific power, speed, and acceleration. Bin 1 indicates an idling mode with the speed within 1.0 mph. However, the speed boundary in an earlier model of MOBILE 6.2 was 2.5 mph. Neither the change in the idling definition of the two models nor the speed boundary were investigated and discussed. This study proposed a method to theoretically redefine the idle boundary by characterizing vehicle emission rates. Vehicle speeds close to 0 mph were carefully studied based on 10,000-mile on-board emission tests in the state of Texas. A portable emission measurement system was used to detect real-time emissions from a 12-year-old gasoline light-duty vehicle, while the vehicle’s activity information was collected from an On-Board Diagnostic (OBD) II port. Power spectral density analysis was conducted on the collected emission and fuel consumption rates to identify a cut-off point that separates the frequency period with higher and lower energy. A Chebeshev I filter was designed to remove the high-frequency component to visualize the variables of emissions and fuel consumption on the vehicle’s moving trend lines. Based on observation and analysis results, 2.26 mph was identified as a boundary for an idle mode at an acceptance level of 95% significant change. It is recommended that the proposed method be applied to the emissions of more different types of vehicles with a wide range of mileages to validate the newly defined idle boundary.


Energy ◽  
2018 ◽  
Vol 157 ◽  
pp. 19-30 ◽  
Author(s):  
Jesús Benajes ◽  
Antonio García ◽  
Javier Monsalve-Serrano ◽  
Rafael Lago Sari

2021 ◽  
Vol 268 ◽  
pp. 01050
Author(s):  
Peilin Geng ◽  
Le Liu ◽  
Yuwei Wang ◽  
Xionghui Zou

This paper focuses on light duty of china 6 with the same emission control technology. three vehicles, with different engine displacements, were selected to study the emission and fuel consumption characteristics under three test cycles of NEDC, WLTC and CLTC. The results show that the emissions of CO, THC and NOx under WLTC cycle are minimum, compared with the NEDC and CLTC circulation. with the decrease of the engine displacement, the difference of CO and THC emissions increases among different cycles, which shows small displacement engine vehicles are greatly affected by driving cycles. Compared with other testing conditions, the PN emissions are relatively larger, but the difference of PN emissions is very small among the three test cycles.The fuel consumption of the WLTC test cycle is the smallest among the three cycles. As the engine displacement decreases, the fuel consumption difference decreases, indicating that the fuel consumption of large displacement engine vehicles is greatly affected by the cycle condition.


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988625 ◽  
Author(s):  
Lijun Hao ◽  
Chunjie Wang ◽  
Hang Yin ◽  
Chunxiao Hao ◽  
Haohao Wang ◽  
...  

In order to estimate the light-duty vehicle fuel economy at high-altitude areas, the coast-down tests of a passenger car on level road were conducted at different elevations, and the coast-down resistance coefficients were calculated. Furthermore, a fuel economy model for a light-duty vehicle adopting backward simulation method was developed, and it mainly consists of vehicle dynamic model, internal combustion engine model, transmission model, and differential model. The internal combustion engine model consists of the brake-specific fuel consumption maps as functions of engine torque and engine speed, and the brake-specific fuel consumption map near sea level was constructed based on engine experimental data, and the brake-specific fuel consumption maps at high altitudes were calculated by GT-Power Modeling of the internal combustion engine. The fuel consumption rate was calculated from the brake-specific fuel consumption maps and brake power and used to calculate the fuel economy of the light-duty vehicle. The model predicted fuel consumption data met well with the test results, and the model prediction errors are within 5%.


2020 ◽  
Author(s):  
Maria F. P. Mazer ◽  
Leonardo S. Hatschbach ◽  
Igor R. dos Santos ◽  
Juliano P. Silveira ◽  
Roberto A. Garlet ◽  
...  

Author(s):  
Stefano d’Ambrosio ◽  
Roberto Vitolo

Active tire pressure management, through an automatic, electro-pneumatic, central tire inflation system, is here proposed as a means of improving fuel consumption in passenger vehicles, as well as safety and drivability. A brief description of the active tire pressure control system, which has been set up at the Politecnico di Torino, is provided as a reference. Different strategies, aimed at reducing rolling resistance, through inflation pressure management, under specific vehicle working conditions, are then illustrated. The fuel benefits that can be achieved by adopting these strategies in passenger vehicles are studied by means of computer simulations using a proprietary software for vehicle performance and fuel consumption estimation. Coast-down coefficients, evaluated experimentally during deceleration tests on a closed track, are generally available at the reference tire pressure prescribed by the original equipment manufacturer of the vehicle. These fixed coefficients can then be used to describe the vehicle in simulation environments. LaClair’s relation, which illustrates the influence of tire inflation pressure on rolling resistance, has therefore been used to recalculate the coast-down coefficients as functions of the tire pressure. This has allowed fuel consumption simulations to be performed on the reference B-segment passenger car under different working conditions. In particular, the following pressure management strategies have been studied: adaptation of the inflation pressure to the vertical load, variation of the inflation pressure during tire warm-up, and adjustment of the inflation pressure, according to the average speed (urban/highway driving). The performed simulations have demonstrated that if the standard tire pressure is maintained, fuel consumption could be reduced by up to 2% in real-world driving; further advantages could be obtained by varying the target pressure as a function of the current working conditions of the vehicle.


Sign in / Sign up

Export Citation Format

Share Document