Experimental evaluation of selective laser melting process for optimized lattice structures

Author(s):  
G De Pasquale ◽  
F Luceri ◽  
M Riccio

Lattice structures fabricated with micromelting of metal powders are promising solutions for lightweight applications. Additive manufacturing processes as selective laser melting are largely used to build bulk components, but the influence of laser settings on lattice struts morphology is not jet fully investigated. Previous studies demonstrate the effect of laser speed and layers thickness on the material density and lattice struts dimensions. In this paper, the effects of the laser volume energy density associated with the process setup parameters are analyzed in relation to the dimensional accuracy of lattice struts. The statistical approach based on design of experiments used in this paper allows getting appreciable reduction of the average errors of struts dimensions (from 48% to 16% and from 22% to 7% in horizontal and vertical orientations, respectively).

2019 ◽  
Vol 9 (9) ◽  
pp. 1922 ◽  
Author(s):  
Tae Woo Hwang ◽  
Young Yun Woo ◽  
Sang Wook Han ◽  
Young Hoon Moon

The selective laser-melting (SLM) process can be applied to the additive building of complex metal parts using melting metal powder with laser scanning. A metal mesh is a common type of metal screen consisting of parallel rows and intersecting columns. It is widely used in the agricultural, industrial, transportation, and machine protection sectors. This study investigated the fabrication of parts containing a mesh pattern from the SLM of AISI 304 stainless steel powder. The formation of a mesh pattern has a strong potential to increase the functionality and cost-effectiveness of the SLM process. To fabricate a single-layered thin mesh pattern, laser layering has been conducted on a copper base plate. The high thermal conductivity of copper allows heat to pass through it quickly, and prevents the adhesion of a thin laser-melted layer. The effects of the process conditions such as the laser scan speed and scanning path on the size and dimensional accuracy of the fabricated mesh patterns were characterized. As the analysis results indicate, a part with a mesh pattern was successfully obtained, and the application of the proposed method was shown to be feasible with a high degree of reliability.


2021 ◽  
Vol 15 ◽  
Author(s):  
Weishi Li ◽  
Kuanting Wang ◽  
Shiaofen Fang

Background: Selective laser melting is the best-established additive manufacturing technology for high-quality metal part manufacturing. However, the widespread acceptance of the technology is still underachieved, especially in critical applications, due to the absence of a thorough understanding of the technology, although several benchmark test artifacts have been developed to characterize the performance of selective laser melting machines. Objective: The objective of this paper is to inspire new designs of benchmark test artifacts to understand the selective laser melting process better and promote the acceptance of the selective laser melting technology. Method: The existing benchmark test artifacts for selective laser melting are analyzed comparatively, and the design guidelines are discussed. Results: The modular approach should still be adopted in designing new benchmark test artifacts in the future, and task-specific test artifacts may also need to be considered further to validate the machine performance for critical applications. The inclusion of the design model in the manufactured artifact, instead of the conformance to the design specifications, should be evaluated after the artifact is measured for the applications requiring high-dimensional accuracy and high surface quality. Conclusion: The benchmark test artifact for selective laser melting is still under development, and a breakthrough of the measuring technology for internal and/or inaccessible features will be beneficial for understanding the technology.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2343 ◽  
Author(s):  
Ahmed Maamoun ◽  
Yi Xue ◽  
Mohamed Elbestawi ◽  
Stephen Veldhuis

Additive manufacturing (AM) of high-strength Al alloys promises to enhance the performance of critical components related to various aerospace and automotive applications. The key advantage of AM is its ability to generate lightweight, robust, and complex shapes. However, the characteristics of the as-built parts may represent an obstacle to the satisfaction of the parts’ quality requirements. The current study investigates the influence of selective laser melting (SLM) process parameters on the quality of parts fabricated from different Al alloys. A design of experiment (DOE) was used to analyze relative density, porosity, surface roughness, and dimensional accuracy according to the interaction effect between the SLM process parameters. The results show a range of energy densities and SLM process parameters for AlSi10Mg and Al6061 alloys needed to achieve “optimum” values for each performance characteristic. A process map was developed for each material by combining the optimized range of SLM process parameters for each characteristic to ensure good quality of the as-built parts. This study is also aimed at reducing the amount of post-processing needed according to the optimal processing window detected.


2019 ◽  
Vol 822 ◽  
pp. 549-555
Author(s):  
Igor A. Polozov ◽  
Evgenii Borisov ◽  
Vera Popovich

This work investigates the Selective Laser Melting (SLM) process for the in-situ synthesis of Ti-5Al and Ti-6Al-4V alloys using elemental powder mixture. Elemental spherical powders were used to prepare a powder mixture and then samples were produced by SLM using different volume energy density. The effects of volume energy density during SLM on samples’ relative density, chemical composition, microstructure and microhardness before and after heat treatment have been studied. It was shown that volume energy density during the SLM process significantly effects the density, microstructure of Ti-5Al and Ti-6Al-4V alloys, as well as, the microhardness of Ti-6Al-4V obtained from elemental powders.


2016 ◽  
Vol 1133 ◽  
pp. 280-284 ◽  
Author(s):  
Zahrul Adnan Mat Taib ◽  
Wan Sharuzi Wan Harun ◽  
Saiful Anwar Che Ghani ◽  
Mohd Fadzil Faisae Ab Rashid ◽  
Mohd Asnawi Omar ◽  
...  

Designing orthodontic implants with desired physical and biological performances and to fabricate net shape with complex anatomical shapes is still a challenge. Cautious design approaches followed by systematic manufacturing techniques that can achieve balanced physical performance in mono block implants mechanics is necessary to accomplish this objective. Metal additive manufacturing (MAM) technique such as selective laser melting (SLM) process is progressively being utilized for new biomaterials such as cobalt-chrome-molybdenum (CoCrMo). This study was designed to determine a dimensional accuracy of open cellular structures CoCrMo samples with designing volume based porosity ranging between 0 % (full dense) to 80 %. A maximum 2.10 % shrinkage was obtained by 80 % designed porosity sample. Samples with higher volume-to-surface area (full dense) demonstrated the low total amount of shrinkage as compared to lower volume-to-surface area (80 % designed porosity).


2018 ◽  
Vol 770 ◽  
pp. 3-8 ◽  
Author(s):  
Lerato Criselda Tshabalala ◽  
Ntombizodwa Mathe ◽  
Hilda Chikwanda

In this paper, titanium powders from various sources were characterized to compare powder intergrity for additive manufacturing by selective laser melting process. Selective laser melting by powder-bed based Additive Manufacturing (AM) is an advanced manufacturing process that bonds successive layers of powder by laser melting to facilitate the creation of engineering components. This manufacturing approach facilitates the production of components with high geometrical complexity that would otherwise be impossible to create through conventional manufacturing processes. Although the use of powder in AM is quite common, powder production and optimization of powder properties to yield desired performance characteristics has posed a serious challenge to researchers. It is therefore critical that powder properties be studied and controlled to ensure reliability and repeatability of the components that are produced. Typically, the desired feature of high quality titanium metal powders for AM are a combination of high sphericity, density and flowability. Scanning electron microscopy, EDS, particle size distribution and powder rheology were extensively performed to investigate the properties of gas-atomized Ti-6Al-4V powders.


Sign in / Sign up

Export Citation Format

Share Document