Evaluation of adhesion properties of lignin-epoxy adhesives in structural wood applications for automotive components

Author(s):  
A Aniol ◽  
T Grosse ◽  
F Fischer ◽  
S Böhm

The use of sustainable hybrid components is an important topic in lightweight automotive applications. Wood being a renewable material, when used in combination with other materials such as technical polymers, offers a high potential for producing hybrid components and the implementation of innovative lightweight automotive materials. The feasibility of wood-based hybrid automotive components strongly depends on the properties of the interface between wood, lignin as a renewable coupling agent, and technical polymers. This paper investigates the macromolecular reactions and the bonding area in biobased epoxy adhesives for a specific influence on the performance of structural automotive wood components. Therefore, a typical bisphenol A diglycidyl ether epoxy adhesive was modified with lignosulphonate to increase the penetration depth. The composites were characterized by thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy to validate the crosslinking of the macromolecules and the thermal stability of the adhesive. In the next step, a layer-by-layer composite was built up with the biobased adhesive and 1 mm beech veneer. The bonding area was characterized by scanning electron microscopy and compression tests.

2019 ◽  
Vol 11 (12) ◽  
pp. 1699-1704 ◽  
Author(s):  
Byoungsang Lee ◽  
Jun Hyuk Heo ◽  
Jin Woong Lee ◽  
Hui Hun Cho ◽  
Jung Heon Lee

Organosilicon compounds have been actively used with nano- and micro-fillers to improve the adhesion and mechanical properties. However, studies on the adhesion properties of polymeric materials, such as polypropylene (PP), functionalized with organosilicon compounds are limited. Here, we investigated the adhesion of organosilanized PP substrates, functionalized using (3-glycidoxypropyl)trimethoxysilane (GPTMS) and (3-aminopropyl)trimethoxysilane (APTMS) as coupling agents, with epoxy adhesives. The curing of epoxy-functionalized PP (PP-EPOXY) with triethylenetetramine (TETA) hardener led to the chemical crosslinking of TETA with PP-EPOXY, as determined by X-ray photoelectron spectroscopy and vacuum Fourier-transform infrared spectroscopy. Similarly, the curing of amine-functionalized PP (PP-NH2) with bisphenol A diglycidyl ether (DGEBA) epoxy resin led to the chemical crosslinking of the resin with PP-NH2. Finally, we measured the adhesion properties of the functionalized PP substrates using an adhesive composed of DGEBA and TETA based on ASTM D3163 and observed that the shear strength of PP-EPOXY and PP-NH2 increased significantly up to 580% and 506% as compared with that of bare PP. These results strongly suggest that the functionalization of PP significantly contributes to the improvement of adhesion with an adhesive.


Author(s):  
A Aniol ◽  
T Grosse ◽  
F Fischer ◽  
S Böhm

The relevance of sustainable structural materials is increasing in automotive components for sustainable construction. The sustainable material wood in particular can be used due to the very good specific mechanical material properties and has a high potential to be used as a structural material in hybrid constructions for the automotive components as an veneer laminate with modified epoxy adhesives. The material properties depend strongly on the interface between the capillary structure of the wood and the epoxy adhesive and also on the curing properties at the manufacturing process. In this study an epoxy adhesive (DGEBA) was copolymerized with lignosulphonate, a biobased waste product from the pulp and paper industry, as a sustainable coupling agent and the kinetic behavior of the macromolecular curing reactions and mechanical properties were characterized for wooden automotive components. The composites were characterized by differential scanning calorimetry (DSC) to investigate the curing kinetics of the biomodified adhesive. Subsequent a laminated veneer lumber was manufactured with beech veneer of 1 mm thickness. The mechanical properties of the composite structure were characterized by tensile tests, bending tests and tensile shear tests. The results show a significant improvement of the manufacturing time due to the kinetic behavior and the mechanical properties for structural components in the automotive industry.


2016 ◽  
Vol 29 (5) ◽  
pp. 276-281
Author(s):  
Jong-Hyun Kim ◽  
Pyeong-Su Shin ◽  
Dong-Jun Kwon ◽  
Sun-Ok Moon ◽  
Joung-Man Park

2018 ◽  
Vol 244 ◽  
pp. 01019
Author(s):  
Jakub Szabelski

The aim of this study was to determine the impact of the incorrect mix ratio on the strength of joints bonded with a commercial epoxy adhesive compo-sition. The performance of cold-cured as well as accelerated cured butt joints was monitored at elevated temperature conditions. The obtained data was subjected to statistical analysis to show the correlation between joint strength at high temperature and incorrect mix ratio. The degradation of adhesive material properties with increase of hardener ratio in adhesive material was observed, as well as the change in failure type from mixed type to clearly cohesive (for inadequate volume of harde-ner) or adhesive (for excessive amount of hardener). Surprisingly insufficiency of hardener doesn’t affect the strength of joint in such manner. General recommend-dation were drawn for the preparation of two-component epoxy adhesives for joints to be used in elevated temperature, particularly when uncertainty regarding the correct resin/hardener mix ratio and future research was planned.


2020 ◽  
pp. 002199832098004
Author(s):  
M Hussain ◽  
A Imad ◽  
A Saouab ◽  
T Kanit ◽  
Y Nawab ◽  
...  

Fibre metal laminates (FML) are being used in automotive, aerospace and naval applications due to their light weight and superior performance. The FMLs are made by sandwiching composite with metal. The environmental concerns due to non-biodegradability of such structures, lead to the development of FML containing natural fibre composites. Natural fibres composite, despite having good damping properties have overall poor mechanical properties. However, this aspect can be improved by weaving the fibres in 3 D pattern. In literature, FML made using 3 D woven jute composites is never reported. Furthermore, no literature is found on adhesion of natural fibre composite-metal bonding. In this paper, development of novel 3 D Jute Reinforced natural fibre Aluminium Laminates (JuRALs) is reported. Furthermore, the effect of 3 D weaving pattern and metal-composite bonding on mechanical properties and failure mechanism of the developed samples is also discussed in detail. The four-layered 3 D woven Jute fabric reinforcement was made using four interlocking patterns. The composites and JuRALs were fabricated using epoxy resin by vacuum infusion technique. The surface of aluminium was treated using phosphoric acid anodizing. Tensile, flexural and T-peel tests were performed according to ASTM testing method using Z100 All-round, Zwick Roell. The results showed that out of four types of used reinforcements, the through-thickness composites had better tensile properties while layer-to-layer composite had better flexural properties. The tensile and flexural properties of JuRALs made with through-thickness interlock reinforcement were better as compared to layer-to-layer interlock reinforcement. The T-peel results depicted that the constituent materials influenced the metal-composite adhesion properties, rather the type of 3 D structure.


2011 ◽  
Vol 21 (6) ◽  
pp. 467-471 ◽  
Author(s):  
Yu-peng ZHANG ◽  
Jun-jie XU ◽  
Zhi-hua SUN ◽  
Chen-zhe LI ◽  
Chun-xu PAN

2014 ◽  
Vol 103 ◽  
pp. 38-45 ◽  
Author(s):  
Zhiliang Wang ◽  
Xueqin Zhang ◽  
Juming Gu ◽  
Haitao Yang ◽  
Jun Nie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document