Different nanofluids as coolant in heat exchanger network: Thermoeconomic modeling and multi-objective optimization

Author(s):  
Hassan Hajabdollahi ◽  
Babak Masoumpour

Modeling and optimization of a multi tube heat exchanger (MTHE) network considering the effects of different nanoparticles on the tube side are carried out using Fast and elitist non-dominated sorting genetic algorithm. After thermal modeling in [Formula: see text] method, optimization is performed by increasing the effectiveness and decreasing total annual cost as two objective functions using eight design parameters such as number of MTHE and particles volumetric concentration. In addition, optimization is performed at three various cold mass flow rates and different nanoparticles including Al2O3, CuO and ZrO2 and results are compared with the base fluid (water). For the reliability of the present code, the modeling results are validated with the results obtained from both the numerical and experimental model. The results show that the optimal Pareto front is improved in nanoparticles case, and the rate of improvement in CuO nanoparticles case, especially in higher effectiveness and lower cold mass flow rate is more significant compared with the other studied cases. In addition, because of improvement in the thermal performance of MTHE network with nanoparticles, the heat transfer surface area and consequently the total volume of MTHE network for the fixed values of effectiveness are noticeably reduced. Finally, the effects of design parameters versus effectiveness are demonstrated and discussed.

Author(s):  
Hassan Hajabdollahi ◽  
Zahra Hajabdollahi

In this paper, the effects of Al2O3 nanoparticles suspended in the water-based fluid on the thermo-economic properties of a fin and tube heat exchanger are studied using fast and elitism nondominated sorting genetic algorithm. Nine design parameters are selected as design parameters, and the total annual cost and effectiveness are considered as the two objective functions. First, the effect of nanoparticle on the total annual cost versus effectiveness is obtained at different cold side mass flow rates, and the results are compared with the base fluid. The results show that nanoparticles have a significant influence on the total annual cost and effectiveness in a lower cold side mass flow rates. Next, the heat exchanger volume versus effectiveness for the optimum points is measured at different cold side mass flow rates. It is demonstrated that, adding Al2O3 nanoparticle to the base fluid for the fixed value of effectiveness, decreases the heat exchanger volume, and this reduction is more significant in the lower mass flow rates. The pressure drop and total heat transfer surface area versus effectiveness for the optimum points are also obtained with and without nanoparticle. An increase in the tube side pressure drop is revealed in the nanofluid. In addition, due to the increase in the overall heat transfer coefficient, the lower heat transfer surface area is required for the fixed value of effectiveness. Finally, variations of objective functions versus particle volumetric concentration for five typical optimum points are estimated. It is concluded that an optimal value for the volumetric concentration can be obtained, in which the effectiveness is highest.


Author(s):  
Tommaso Selleri ◽  
Behzad Najafi ◽  
Fabio Rinaldi ◽  
Guido Colombo

In the present paper a mathematical model for a mini-channel heat exchanger is proposed. Multiobjective optimization using genetic algorithm is performed in the next step in order to obtain a set of geometrical design parameters, leading to minimum pressure drops and maximum overall heat transfer coefficient. Multiobjective optimization procedure provides a set of optimal solutions, called Pareto front, each of which is a trade-off between the objective functions and can be freely selected by the user according to the specifications of the project. A sensitivity analysis is also carried out to study the effects of different geometrical parameters on the considered functions. The whole system has been modeled based on advanced experimental correlations in matlab environment using a modular approach.


2014 ◽  
Vol 65 (7) ◽  
pp. 699-713 ◽  
Author(s):  
I. M. Shahrul ◽  
I. M. Mahbubul ◽  
R. Saidur ◽  
S. S. Khaleduzzaman ◽  
M. F. M. Sabri ◽  
...  

Author(s):  
J. Thavamani

Heat exchanger is the most important function in industrial sector for transferring heat energy to useful work. Heat transfer occurs between the cold fluid and hot fluid or from hot fluid to cold fluid in conduction and convection mode of through a heat exchanger wall. If heat transfer medium has very low thermal conductivity, it would have limited the efficiency of heat exchanger. Whenever the system is subjected to increased heat load, cooling is the main technical challenge for industries. The main objective of this work is to evaluate the effectiveness of shell and tube heat exchanger experimentally and analyse the flow behaviours of different nanofluids. In our experimental analysis, various nanofluids which consist of water and one percentage volume concentration of Al2O3, CuO and SiO2 passing through tube side in the shell and tube heat exchanger. The nano particle diameter is 70nm. The three dissimilar mass flow rates are considered for the experiments and their results are continuously monitored. The enhancement of heat transfer performance of CuO, Al2O3, SiO2 is compared with the base fluid water. Reynolds number values are calculated with three different mass flow rates and compared with heat transfer characteristics (LMTD, Nusselt number and overall heat transfer coefficient). SEM analysis, energy dispersive spectroscopy, X-ray diffraction of CuO, Al2O3 and SiO2.are conducted. The heat transfer effectiveness is increased by 22.12%, 19.46% and 1.47% respectively for CuO, Al2O3 and SiO2 when compared to base fluid.


2013 ◽  
Vol 832 ◽  
pp. 154-159 ◽  
Author(s):  
Islam Md. Shahrul ◽  
I.M. Mahbubul ◽  
Rahman Saidur ◽  
Mohd Faizul Mohd Sabri ◽  
Muhammad Afifi Amalina ◽  
...  

Global warming and other problems can be reduced by effectively using the available materials and facilities. Heat exchangers play an important part of the field of energy conservation, conversion and recovery. Shell & tube heat exchangers are widely using in industrial processes and power plants. Suspension of small amounts of nanoparticles into the base fluid called nanofluid can reduce the global energy losses. Thermal conductivity of Multi Walled Carbon Nanotube (MWCNT) is highest among the different nano materials [1]. Therefore, in this paper, the overall performance of a shell & tube heat exchanger has been analytically investigated by using MWCNT-W nanofluid with 0.02-0.1 vol. fractions of MWCNT and compared with water. Mathematical formula, specifications of heat exchanger and nanofluid properties were taken from the literatures to analyze the energy performance and other effects within the system. It is found that for certain mass flow rates of nanofluid and base fluid, the convective heat transfer coefficient increased around 4% to 17% compared to pure water, respectively for 0.02-0.1 vol. fractions of MWCNT in water. However, for constant vol. fractions of MWCNT, convective heat transfer coefficient of the above nanofluid negligibly changed for different mass flow rates. Furthermore, energy effectiveness of the heat exchanger also improved approximately by 3% to 14%, respectively. This energy effectiveness again improved with the decrease of the mass flow rates of nanofluids (tube side) and increase of the mass flow rates of base fluid (shell side). As energy effectiveness is increased by using MWCNT-W nanofluid, therefore, a significant amount of heat losses will be reduced. As a result, with the reduced heat emissions, global warming and greenhouse effects can be reduced by using MWCNT-W nanofluid as working fluid in shell & tube heat exchanger system.


2018 ◽  
Vol 6 (3) ◽  
pp. 1-12
Author(s):  
Kamil Abdul Hussien

Abstract-The present work investigates the enhancement of heat transfer by using different number of circular fins (8, 10, 12, 16, and 20) in double tube counter flow heat exchanger experimentally. The fins are made of copper with dimensions 66 mm OD, 22 mm ID and 1 mm thickness. Each fin has three of 14 mm diameter perforations located at 120o from each to another. The fins are fixed on a straight smooth copper tube of 1 m length, 19.9 mm ID and 22.2 mm OD. The tube is inserted inside the insulated PVC tube of 100 mm ID. The cold water is pumped around the finned copper tube, inside the PVC, at mass flow rates range (0.01019 - 0.0219) kg/s. The Reynold's number of hot water ranges (640 - 1921). The experiment results are obtained using six double tube heat exchanger (1 smooth tube and the other 5 are finned one). The results, illustrated that the heat transfer coefficient proportionally with the number of fin. The results also showed that the enhancement ratio of heat transfer for finned tube is higher than for smooth tube with (9.2, 10.2, 11.1, 12.1 13.1) times for number of fins (8, 10, 12, 16 and 20) respectively.


Author(s):  
Racheet Matai ◽  
Savas Yavuzkurt

The performance of an industrial fan was simulated using CFD and results were compared with the experimental data. The fan is used to cool a row of resistor networks which dissipate excess energy generated by regenerative power in an inverter application. It has a diameter of 24 inches (0.6096m) and rotates at different speeds ranging from 2500 to 3900 RPM depending on the requirements. CFD simulation results were also verified by simulating performance of the same fan at different speeds and comparing the results with what was expected from fan affinity laws. The CFD results matched almost exactly (with ∼0.2% difference for pressure at a given flow rate) with the performance being predicted by the affinity laws. The effect of variation of different parameters such as the blade length, number of blades, and blade chord length was studied. Increasing the blade length at the same RPM increased the mass flow rate (by ∼17%) for the same pressure. Increasing the chord length while keeping the same number of blades, at a given RPM, made the performance curve (pressure versus flow rate, i.e. PV curve) steeper and blades stalled at a higher mass flow rate (8.77 kg/sec compared to the previous 8.44 kg/sec). For the same total blade surface area, less number of blades with longer chords stalled at lower mass flow rates (9.22 kg/sec for a 33% shorter chord and 36 blades compared to 8.3 kg/sec for the original rotor which had 24 blades).


Author(s):  
Renaud Henry ◽  
Damien Chablat ◽  
Mathieu Porez ◽  
Frédéric Boyer ◽  
Daniel Kanaan

This paper addresses the dimensional synthesis of an adaptive mechanism of contact points ie a leg mechanism of a piping inspection robot operating in an irradiated area as a nuclear power plant. This studied mechanism is the leading part of the robot sub-system responsible of the locomotion. Firstly, three architectures are chosen from the literature and their properties are described. Then, a method using a multi-objective optimization is proposed to determine the best architecture and the optimal geometric parameters of a leg taking into account environmental and design constraints. In this context, the objective functions are the minimization of the mechanism size and the maximization of the transmission force factor. Representations of the Pareto front versus the objective functions and the design parameters are given. Finally, the CAD model of several solutions located on the Pareto front are presented and discussed.


2015 ◽  
Vol 62 (4) ◽  
pp. 509-522 ◽  
Author(s):  
R. Dharmalingam ◽  
K.K. Sivagnanaprabhu ◽  
J. Yogaraja ◽  
S. Gunasekaran ◽  
R. Mohan

Abstract Cooling is indispensable for maintaining the desired performance and reliability over a very huge variety of products like electronic devices, computer, automobiles, high power laser system etc. Apart from the heat load amplification and heat fluxes caused by many industrial products, cooling is one of the major technical challenges encountered by the industries like manufacturing sectors, transportation, microelectronics, etc. Normally water, ethylene glycol and oil are being used as the fluid to carry away the heat in these devices. The development of nanofluid generally shows a better heat transfer characteristics than the water. This research work summarizes the experimental study of the forced convective heat transfer and flow characteristics of a nanofluid consisting of water and 1% Al2O3 (volume concentration) nanoparticle flowing in a parallel flow, counter flow and shell and tube heat exchanger under laminar flow conditions. The Al2O3 nanoparticles of about 50 nm diameter are used in this work. Three different mass flow rates have been selected and the experiments have been conducted and their results are reported. This result portrays that the overall heat transfer coefficient and dimensionless Nusselt number of nanofluid is slightly higher than that of the base liquid at same mass flow rate at same inlet temperature. From the experimental result it is clear that the overall heat transfer coefficient of the nanofluid increases with an increase in the mass flow rate. It shows that whenever mass flow rate increases, the overall heat transfer coefficient along with Nusselt number eventually increases irrespective of flow direction. It was also found that during the increase in mass flow rate LMTD value ultimately decreases irrespective of flow direction. However, shell and tube heat exchanger provides better heat transfer characteristics than parallel and counter flow heat exchanger due to multi pass flow of nanofluid. The overall heat transfer coefficient, Nusselt number and logarithmic mean temperature difference of the water and Al2O3 /water nanofluid are also studied and the results are plotted graphically.


2018 ◽  
Vol 12 (4) ◽  
pp. 4098-4116
Author(s):  
M. Abid ◽  
B. A. A. Yousef ◽  
M. E. Assad ◽  
A. Hepbasli ◽  
K. Saeed

Building sector consumes a greater portion of energy for heating and cooling applications. The utilization of fossil fuels for space and water heating in buildings cause a negative effect on the environment by producing larger CO2. In this study solar thermal water heating system for building application have been analyzed from the first and second law perspectives of thermodynamics considering various scenarios and water consumption pattern. The solar flat collector is very commonly used to extract energy from sunlight. Therefor energy and exergy efficiency curves for the solar flat collector were presented. The energetic and exergetic values for the system were calculated based on the experimental values for the overall system, the heat exchanger and the pumps using the approach of exergetic product/fuel basis. The greatest and lowest relative irreversibility’s occurred at the solar collector and the heat exchanger with values of 85.73% and 2.45%, respectively, and the system overall exergy efficiency was determined to be 20.28%. The energy and exergy efficiencies of the solar collector were analyzed at three different cases depending on the mass flow rates in the solar collector and the secondary circuit of the system. Three different mass flow rates were applied to the inlet of the secondary circuit to observe the efficiency effect on the solar collector circuit. This study can assist in selecting a proper solar collector and storage size for buildings of various capacity and possible improvement in the design of the system components.


Sign in / Sign up

Export Citation Format

Share Document