Design, simulation, and experiment research on fast control system of steam turbine inlet valve

Author(s):  
Ying Liu ◽  
Xiaoju Yin ◽  
Yunlong Yi ◽  
Xiaoxiao Li ◽  
Liming Wang

In this paper, a new fast control system of steam turbine inlet valve is designed, which is composed of the fast closing system and the fast opening system. For the first time, this paper proposes that the fast closing system is designed by means of the special structure of the slide valve in an oil servo motor on the basis of the transformation of the hydraulic control system of steam turbine inlet valve. For the first time, a differential oil discharge fast opening system is designed by use of two cartridge valves. The mathematical model of electro-hydraulic fast control system is presented. With the use of simulation software Advanced Modeling Environment for Simulation of engineering systems , the curves of parameters such as piston displacement, piston velocity, oil pressure of upper and nether cavities of oil servo motor, and flow flux of upper and nether cavities of oil servo motor are obtained. The fast closing time of the piston for whole journey from the simulation results is 0.36 s. The fast opening time of the piston for whole journey from the simulation results is 1.55 s. According to the designed structure of the fast control system, the fast control experiment system is built. The fast closing time of the piston for whole journey from the experiment results is 0.22 s. The fast opening time of the piston for the whole journey from the experiment results is 1.97 s. The simulation and experimental results show that the designed fast control system can realize the fast closing and fast opening of the inlet valve. The fast closing time of the fast control system is <0.5 s, and the fast opening time of the fast control system is <3 s, which meets the fast control time requirement of the steam turbine inlet valve. Compared with the existing fast control system products, the fast control system and the inlet valve servo regulation system share a set of oil sources. And the fast control system has the advantages of low cost, simple structure, easy implementation, etc.

Author(s):  
Ying Liu ◽  
Qimin Wang ◽  
Xiaoxiao Li ◽  
Liming Wang

In this paper, the transformation of steam turbine regulating system from mechanical hydraulic regulation to electro-hydraulic regulation is realized. And the internal leakage mechanism of the hydraulic control switch valve and the electro-hydraulic proportional valve in the system is analyzed. With the use of hydraulic simulation software AMESim, the mathematical model of the electro-hydraulic control system after transforming is established. The parameters of the hydraulic control switch valve and the electro-hydraulic proportional valve in the hydraulic control system of steam turbine inlet valve are studied under different internal leakage locations and different leakage degree, such as piston regulating time, steady position of piston, oil pressure and leakage flow flux. The fault characteristic table of internal leakage is obtained. An experimental platform for simulating internal leakage is built. The experimental curves of several physical quantities under different internal leakage conditions are obtained. The experimental results prove that the internal leakage has a great impact on the performance of the electro-hydraulic control system. The results of internal leakage experiment are consistent with those of internal leakage simulation.


2015 ◽  
Vol 710 ◽  
pp. 47-52 ◽  
Author(s):  
Ya Qing Zhu ◽  
Min Zhong ◽  
Yu Jia Ma ◽  
Feng Ping Pan ◽  
Ling Ling Shi ◽  
...  

The system damping of electric power systems is influenced by factors of many aspects. In this paper, we analyzed the impact of speed control system on the damping of the whole system in consideration of the Pole-Zero Analysis. The result shows that simple speed control would damp the oscillation, while the power-frequency control would excite the oscillation. Furthermore, the effect of steam turbine response rate on the system damping is analyzed. The time constant of hydraulic servo-motor would determine the response rate of the steam turbine, and as a result, an inflection point exists on the curve which describes the relationship between hydraulic servo-motor time constant and system damping. The result demonstrates that the characteristics of system damping can be used in parameter debugging of steam turbine.


2021 ◽  
Vol 261 ◽  
pp. 03049
Author(s):  
He Li ◽  
Yanchi Zhang ◽  
Da Xie ◽  
Maoye Wang

Aiming at the problem of low redundancy in the structure of the cascaded H-bridge STATCOM. This paper studies and designs a cascaded H-bridge STATCOM device based on STM32 distributed control. The article introduces the basic topology of the device and the realization principle of the control system. The turn-on and turn-off time of the MOSFET in each H-bridge is calculated by using the law of minimum harmonics, realize the output of the fitted sine wave. A simulation model of 12H bridge cascade is built in the EMTP power system electromagnetic transient analysis simulation software. The simulation results show the correctness and reliability of the design.


Author(s):  
Weizhe Wang ◽  
Sihua Xu ◽  
Yingzheng Liu

The aim of this study was to investigate the cyclic creep–fatigue interaction behavior in a steam turbine inlet valve under cyclic thermomechanical loading conditions. Three years and nine iterations of idealized startup–steady-state operation–shutdown process were chosen. The Ramberg–Osgood model, the Norton–Bailey law, and continuum damage mechanics were applied to describe the stress–strain behavior and calculate the damage. The strength of the steam valve revealed that significant stress variation mainly occurred at the joint parts between the valve diffuser and the adjust valve body, due to the combination of the enhanced turbulent flow and assembly force at these areas. The contact stress at the region of component assembly was sensitive to the cyclic loading at the initial iterations. The maximum decrease amplitude in the normalized contact stress between the second and the fourth iterations reached 0.12. The damage analysis disclosed that the notch of the deflector in the adjust valve had the maximum damage due to the stress concentration.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 4-11
Author(s):  
MOHAMED CHBEL ◽  
LUC LAPERRIÈRE

Pulp and paper processes frequently present nonlinear behavior, which means that process dynam-ics change with the operating points. These nonlinearities can challenge process control. PID controllers are the most popular controllers because they are simple and robust. However, a fixed set of PID tuning parameters is gen-erally not sufficient to optimize control of the process. Problems related to nonlinearities such as sluggish or oscilla-tory response can arise in different operating regions. Gain scheduling is a potential solution. In processes with mul-tiple control objectives, the control strategy must further evaluate loop interactions to decide on the pairing of manipulated and controlled variables that minimize the effect of such interactions and hence, optimize controller’s performance and stability. Using the CADSIM Plus™ commercial simulation software, we developed a Jacobian sim-ulation module that enables automatic bumps on the manipulated variables to calculate process gains at different operating points. These gains can be used in controller tuning. The module also enables the control system designer to evaluate loop interactions in a multivariable control system by calculating the Relative Gain Array (RGA) matrix, of which the Jacobian is an essential part.


Author(s):  
Neng Wan ◽  
Guangping Zeng ◽  
Chunguang Zhang ◽  
Dingqi Pan ◽  
Songtao Cai

This paper deals with a new state-constrained control (SCC) system of vehicle, which includes a multi-layer controller, in order to ensure the vehicle’s lateral stability and steering performance under complex environment. In this system, a new constraint control strategy with input and state constraints is applied to calculate the steady-state yaw moment. It ensures the vehicle lateral stability by tracking the desired yaw rate value and limiting the allowable range of the side slip. Through the linkage of the three-layer controller, the tire load is optimized and achieve minimal vehicle velocity reduction. The seven-degree-of-freedom (7-DOF) simulation model was established and simulated in MATLAB to evaluate the effect of the proposed controller. Through the analysis of the simulation results, compared with the traditional ESC and integrated control, it not only solves the problem of obvious velocity reduction, but also solves the problem of high cost and high hardware requirements in integrated control. The simulation results show that designed control system has better performance of path tracking and driving state, which is closer to the desired value. Through hardware-in-the-loop (HIL) practical experiments in two typical driving conditions, the effectiveness of the above proposed control system is further verified, which can improve the lateral stability and maneuverability of the vehicle.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1342
Author(s):  
Van Chien Pham ◽  
Jae-Hyuk Choi ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Kyunam Park ◽  
...  

This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.


Sign in / Sign up

Export Citation Format

Share Document