A spatial dynamics model for heavy-haul electric locomotives considering the dynamic coupling effect of gear transmissions

Author(s):  
Chunyan He ◽  
Zaigang Chen ◽  
Wanming Zhai ◽  
Jianzheng Jiang ◽  
Kaiyun Wang

A locomotive is usually powered by the electromagnetic torque which is transmitted from the traction motor to the wheelset by gear transmission. In order to investigate the dynamic coupling effects from the gear transmission subsystems on the entire locomotive dynamics system, a comprehensive spatial locomotive dynamics model that considers the dynamic coupling effect of the gear transmissions is developed based on the multibody dynamics theory. In this model, the moved Marker technique is employed to calculate the dynamic mesh force of the gear pairs through which more accurate time-varying gear mesh stiffness excitations could be imported, which is the core of this dynamic model. Then, the established locomotive dynamics model is validated by comparing with the experimental test results. Finally, the dynamic effects of the gear transmissions are revealed by comparing with the results from the traditional locomotive dynamics model without considering the dynamic excitations from the gear transmissions. The results indicate that the gear transmissions have negligible effects on the vibrations of the carbody and the bogie frame, and on the lateral vibrations of the motor and the wheelset. However, the gear transmissions have significant effects on the vertical and, in particular, the longitudinal vibrations of the motor and the wheelset. Thus, it is suggested that the dynamic effects of the gear transmissions are considered in the locomotive dynamics modeling, especially when the vibrations of the motors and the wheelsets are taken into account.

Author(s):  
Zhonghui Yin ◽  
Jiye Zhang ◽  
Haiying Lu ◽  
Weihua Zhang

Due to urbanisation and the economic challenges of traffic, it is urgently necessary to develop an environmentally friendly virtual-track train with suitable speed, high load capacity and low construction cost in China. To guide the design and evaluate this train’s dynamic behaviour, a spatial-dynamics model has been developed based on the dynamics theory and tyre-road interaction. The proposed dynamics model comprises mechanical vehicle systems, traction and braking characteristics and tyre-road dynamic interactions. The coupling effects amongst those systems of virtual track train are derived theoretically for the first time. The nonlinear characteristics of the tyre are modelled by the transit tyre-magic formula with consideration of road irregularities. Based on a designed PID controller and the comprehensive dynamics model, the dynamic performance of the system can be revealed considering motion coupling effects and complicated excitations, especially under traction and braking conditions. The dynamic responses of whole virtual track train can be obtained by numerical integration under different conditions. The vibration characteristics of such train are assessed under running at a constant speed and during the traction/braking process. The results show that the vibrations of the vehicle system are significantly influenced by road irregularities, especially at high speed ranges. The motions and vibrations of different components are intensive coupled, which should not to be neglected in the dynamics assessment of the virtual track train. Besides, the dynamics model can also be applied to dynamics-related assessment (fatigue, strength and some damage conditions, et al.) and parameter optimisation of the virtual-track train.


Author(s):  
Zhiwei Wang ◽  
Yao Cheng ◽  
Guiming Mei ◽  
Weihua Zhang ◽  
Guanhua Huang ◽  
...  

The gear transmission system of a high-speed train is the key component, which delivers the traction torque from the motor to the wheelset. It couples with the vehicle system via the suspension system, gear meshing and the wheel–rail interface. The dynamic performance of the transmission system directly affects the operational reliability or even the running safety of high-speed trains. In this study, the effects of wheel polygonalisation and wheel flat on the dynamic responses of the transmission system are investigated through simulations of a novel vehicle dynamics model. This model integrates the flexible gearbox housing, the time-varying mesh stiffness and the nonlinear gear tooth backlash, and the track irregularities to obtain more realistic responses of the traction transmission systems in a vehicle vibration environment, from motors to wheelsets, under the effects of the wheel flat and polygonal wear. The field experimental tests are implemented for a vehicle running along a main high-speed railway line in China. Subsequently, the developed dynamics model is validated with good agreement between the experimental and the theoretical results. The calculated results revealed that wheel flat and wheel polygonal wear caused a high-frequency fluctuation of both the longitudinal creep force and the gear mesh force, causing a violent and complex torsional vibration of the gear transmission system. Moreover, the flexible deformation of the gearbox housing, especially its resonance due to the wheel polygonal wear, contributed to the torsional vibration of the gear transmission system.


2019 ◽  
Author(s):  
Arti Aulia ◽  
Supriatna . ◽  
Masita Dwi Mandini Manessa ◽  
Yoanna Ristya

Parangtritis coastal village is located on the southern coast of Bantul Regency that popular with tourism and capture fisheries activities. The advantages of the tourism and capture fisheries sector make Parangtritis Village seen as a field to earn a living and causes healing in population or people income of Parangtritis Village. This situation can affect the need for space and land, which can have an impact on decreasing the carrying capacity of the environment so that predictions are needed on land availability using a model of spatial dynamics. This study aims to build a model of spatial dynamics for land availability and analyze the relationship among these models with the education level and income of Parangtritis Village. The methods that used in this study is a spatial dynamics modeling method which using population data for 2008-2018 and Google Earth imagery in 2008, 2013, and 2018, and interview with grid area used for the level of education and income. The development of the built area observed through a spatial dynamics model of the relationship between population growth and land availability in the period 2008-2100. The model prediction shows that the developed land has developed from the appropriate area to meet the regional capacity that is not appropriate in 2039. The analysis results showed that the fastest growth of the built-up area was in areas with high levels of education and high-income levels.


Author(s):  
Zhonghui Yin ◽  
Jiye Zhang ◽  
Haiying Lu

To solve the urbanization and the economic challenges, a virtual track train (VTT) transportation system has been proposed in China. To evaluate the dynamic behavior of the VTT, a spatial dynamics model has been developed that considers the suspension system and the steering system. Additionally, the model takes into account road irregularity to make simulations more realistic. Based on the newly proposed dynamic model and a designed proportional–integral–derivative (PID) controller, simulation frames of the vehicle and of the VTT are established with the path-tracking performance. The results show that the vehicle and the VTT can run along a desired lane with allowable errors, verifying the proposed model. The vehicle and VTT with the four-wheel steering system show a better dynamic performance than the models with the front-wheel steering system in the curved section. Moreover, the simulation frame can be further applied to dynamics-related assessments, parameter optimization and active suspension control strategy.


Author(s):  
Peiqiang Yang ◽  
Xueping Zhang ◽  
Zhenqiang Yao ◽  
Rajiv Shivpuri

Abstract Titanium alloys’ excellent mechanical and physical properties make it the most popular material widely used in aerospace, medical, nuclear and other significant industries. The study of titanium alloys mainly focused on the macroscopic mechanical mechanism. However, very few researches addressed the nanostructure of titanium alloys and its mechanical response in Nano-machining due to the difficulty to perform and characterize nano-machining experiment. Compared with nano-machining, nano-indentation is easier to characterize the microscopic plasticity of titanium alloys. This research presents a nano-indentation molecular dynamics model in titanium to address its microstructure alteration, plastic deformation and other mechanical response at the atomistic scale. Based on the molecular dynamics model, a complete nano-indentation cycle, including the loading and unloading stages, is performed by applying Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). The plastic deformation mechanism of nano-indentation of titanium with a rigid diamond ball tip was studied under different indentation velocities. At the same time, the influence of different environment temperatures on the nano-plastic deformation of titanium is analyzed under the condition of constant indentation velocity. The simulation results show that the Young’s modulus of pure titanium calculated based on nano-indentation is about 110GPa, which is very close to the experimental results. The results also show that the mechanical behavior of titanium can be divided into three stages: elastic stage, yield stage and plastic stage during the nano-indentation process. In addition, indentation speed has influence on phase transitions and nucleation of dislocations in the range of 0.1–1.0 Å/ps.


Author(s):  
Mirela Zalar ◽  
Louis Diebold ◽  
Eric Baudin ◽  
Jacqueline Henry ◽  
Xiao-Bo Chen

Sloshing, a violent behaviour of liquid contents in tanks submitted to the forced vessels’ motion on the sea represents one of the major considerations in LNG vessels design over several past decades. State of the art of sloshing analysis relies on small-scale sloshing model tests supported by extensive developments of CFD computation techniques, commonly studying one isolated tank submitted to the forced motion without their mutual interaction. In reality, wave-induced response of the vessel carrying liquid cargo is affected by internal liquid motion, and consequently, tank liquid flow is altered by the vessel motion in return. An efficient numerical model for dynamic coupling between motions exerted by tank liquid (sloshing) and rigid body motions of the vessel (seakeeping) was developed in Bureau Veritas, formulated under the assumptions of linear potential theory in frequency domain. As already experienced with anti-rolling tanks, strong coupling effect is perceived on the first order transverse motions. However, consequences of coupled motions on sloshing loads have not been explored yet. This paper presents comparative analysis of sloshing effects induced by coupled and non-coupled vessel motion, introduced as the excitation to 6 d.o.f. small-scale model test rig. Possible risk of coupled effects is demonstrated on the example of standard size of LNG carrier operating with partly filled cargo tanks.


Author(s):  
Y. H. Tang ◽  
H. Yu ◽  
J. E. Gordon ◽  
M. Priante ◽  
D. Y. Jeong ◽  
...  

This paper describes analyses of a railroad tank car impacted at its side by a ram car with a rigid punch. This generalized collision, referred to as a shell impact, is examined using nonlinear (i.e., elastic-plastic) finite element analysis (FEA) and three-dimensional (3-D) collision dynamics modeling. Moreover, the analysis results are compared to full-scale test data to validate the models. Commercial software packages are used to carry out the nonlinear FEA (ABAQUS and LS-DYNA) and the 3-D collision dynamics analysis (ADAMS). Model results from the two finite element codes are compared to verify the analysis methodology. Results from static, nonlinear FEA are compared to closed-form solutions based on rigid-plastic collapse for additional verification of the analysis. Results from dynamic, nonlinear FEA are compared to data obtained from full-scale tests to validate the analysis. The collision dynamics model is calibrated using test data. While the nonlinear FEA requires high computational times, the collision dynamics model calculates gross behavior of the colliding cars in times that are several orders of magnitude less than the FEA models.


2005 ◽  
Vol 237-240 ◽  
pp. 659-664
Author(s):  
Frédéric Christien ◽  
Alain Barbu

Irradiation of metals leads to the formation of point-defects (vacancies and selfinterstitials) that usually agglomerate in the form of dislocation loops. Due to the elastic interaction between SIA (self-interstitial atoms) and dislocations, the loops absorb in most cases more SIA than vacancies. That is why the loops observed by transmission electron microscopy are almost always interstitial in nature. Nevertheless, vacancy loops have been observed in zirconium following electron or neutron irradiation (see for example [1]). Some authors proposed that this unexpected behavior could be accounted for by SIA diffusion anisotropy [2]. Following the approach proposed by Woo [2], the cluster dynamics model presented in [3] that describes point defect agglomeration was extended to the case where SIA diffusion is anisotropic. The model was then applied to the loop microstructure evolution of a zirconium thin foil irradiated with electrons in a high-voltage microscope. The main result is that, due to anisotropic SIA diffusion, the crystallographic orientation of the foil has considerable influence on the nature (vacancy or interstitial) of the loops that form during irradiation.


Sign in / Sign up

Export Citation Format

Share Document