Effects of revolute clearance joint on the dynamic behavior of a planar space arm system

Author(s):  
Huihui Miao ◽  
Bing Li ◽  
Jie Liu ◽  
Anqi He ◽  
Shangkun Zhu

Space arm system is a typical multibody mechanical system requiring high operation stability and precision connected by kinematic joints. As joint clearance is inevitable during the manufacturing and mounting process, it turns into a critical problem affecting the dynamic characteristics and kinematic accuracy of the mechanism. A space arm system deploying stably and accurately is the prerequisite to guarantee the final satellite pointing accuracy once it is into its working state. Thus, the space arm system needs to have good dynamic characteristics and stability during its deploying process and to have accurate and reliable positioning characteristics during its locking process. For the deploying process, the mathematical model of a multibody system with clearance joint has been established as a foundation to study the influence of clearance properties, including clearance size, clearance joint locations, numbers of clearance joints and lubrication on the dynamic performance and motion stability of a two-degrees-of-freedom space arm system. The mathematical model of a locking mechanism has been established to study the clearance effects on the pointing accuracy of the space arm system during its locking process. The simulation results show that, the clearance has different effects on the dynamic characteristics of the space arm system during its different working processes.

2019 ◽  
Vol 14 (2) ◽  
pp. 106-110 ◽  
Author(s):  
Владимир Медведев ◽  
Vladimir Medvedev ◽  
Станислав Синицкий ◽  
Stanislav Sinickiy

The article provides an analysis of the existing methods and techniques for assessing the dynamic characteristics of engines of mobile machines, and also presents theoretical calculations for estimating the dynamic performance of an machine and tractor unit’s engine under unsteady load. The proposed mathematical model describes the change in the performance of the engine of machine and tractor unit with a linear law of loading and allows you to compare an engine’s operation at unsteady load with the ideal. The quasi-dynamic characteristic was laid as the theoretical basis for study to assess the dynamic performance of machine and tractor unit’s engine under unsteady load. Comparison of the dynamic performance of engines at unsteady load with ideal performance, which have no dynamic losses. It is proposed to apply the “quasi-dynamic” characteristics. The quasidynamic (ideal) characteristic is called - the change in the performance of machine and tractor unit’s engine, in the transition process, occurring in accordance with the change in the frequency of rotation of the crankshaft on the stationary characteristics. The mathematical model for estimating the dynamic performance of an machine and tractor unit’s engine using a correcting branch with an unsteady load is experimental equations for load buildup. Theoretical relationships have been developed for evaluating the dynamic performance of an engine with an unsteady load on the correcting branch of the regulatory characteristic. Using the proposed theoretical dependences, it is possible to carry out theoretical studies of the effect of load on the dynamic performance of an machine and tractor unit’s engine and determine the total dynamic losses.


2021 ◽  
Vol 11 (9) ◽  
pp. 4130
Author(s):  
Oleksij Fomin ◽  
Alyona Lovska ◽  
Václav Píštěk ◽  
Pavel Kučera

The study deals with determination of the vertical load on the carrying structure of a flat wagon on the 18–100 and Y25 bogies using mathematic modelling. The study was made for an empty wagon passing over a joint irregularity. The authors calculated the carrying structure of a flat wagon with the designed parameters and the actual features recorded during field tests. The mathematical model was solved in MathCad software. The study found that application of the Y25 bogie for a flat wagon with the designed parameters can decrease the dynamic load by 41.1% in comparison to that with the 18–100 bogie. Therefore, application of the Y25 bogie under a flat wagon with the actual parameters allows decreasing the dynamic loading by 41.4% in comparison to that with the 18–100 bogie. The study also looks at the service life of the supporting structure of a flat wagon with the Y25 bogie, which can be more than twice as long as the 18–100 bogie. The research can be of interest for specialists concerned with improvements in the dynamic characteristics and the fatigue strength of freight cars, safe rail operation, freight security, and the results of the research can be used for development of innovative wagon structures.


Author(s):  
R Maiti ◽  
R Saha ◽  
J Watton

The steady state and dynamic characteristics of a two-stage pressure relief valve with proportional solenoid control of the pilot stage is studied theoretically as well as experimentally. The mathematical model is studied within the MATLAB-SIMULINK environment and the non-linearities have been considered via the use of appropriate SIMULINK blocks. The detailed modelling has resulted in a good comparison between simulation and measurement, albeit assumptions had to be made regarding the solenoid dynamic characteristic based upon practical experience. The use of this characteristic combined with additional dynamic terms not previously considered allows new estimations of internal characteristics to be made such as the damping flowrate. The overall dynamic behaviour has been shown to be dominated by the solenoid characteristic relating force to applied voltage.


2019 ◽  
pp. 20-66
Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


2013 ◽  
Vol 390 ◽  
pp. 242-245 ◽  
Author(s):  
Alexander V. Chekanin

The article deals with the actual problem of improving the accuracy of determining the dynamic characteristics of beam structures. To solve such problems the displacement method is used. Defining matrices are calculated with the Godunovs scheme. Numerical solutions in this case can be obtained practically with any accuracy within accepted hypotheses of the mathematical model of the calculated object. This suggests that the resulting solutions are standard. The examples of determining the natural frequencies of vibrations of beam structures that demonstrate an extremely high accuracy of the proposed algorithm are given.


2012 ◽  
Vol 268-270 ◽  
pp. 1517-1522 ◽  
Author(s):  
Guo Jin Chen ◽  
Ting Ting Liu ◽  
Ni Jin ◽  
You Ping Gong ◽  
Huo Qing Feng

The logistics and loading machinery is the typical hydromechatronics integrated system. How to solve the reasonable power match in the driving and lifting process of the logistics and loading machinery, we need to establish the mathematical model of the driving and lifting system, and analyze their control characteristics. Aiming at the load requirements for different operating conditions, this paper studies respectively the dynamic characteristics of the driving and lifting system. Through simulation and computation, the control methods and strategies based on the best performance are proposed. That lays the foundation for the optimization design of the logistics and loading machinery.


1993 ◽  
Vol 115 (1) ◽  
pp. 103-109 ◽  
Author(s):  
R. Agrawal ◽  
G. L. Kinzel ◽  
R. Srinivasan ◽  
K. Ishii

In many mechanical systems, the mathematical model can be characterized by m nonlinear equations in n unknowns. The m equations could be either equality constraints or active inequality constraints in a constrained optimization framework. In either case, the mathematical model consists of (n-m) degrees of freedom, and (n-m) unknowns must be specified before the system can be analyzed. In the past, designers have often fixed the set of (n-m) specification variables and computed the remaining n variables using the n equations. This paper presents constraint management algorithms that give the designer complete freedom in the choice of design specifications. An occurrence matrix is used to store relationships among design parameters and constraints, to identify dependencies among the variables, and to help prevent redundant specification. The interactive design of a torsion bar spring is used to illustrate constraint management concepts.


Author(s):  
D.E. Molochnikov ◽  
◽  
R.Sh. Halimov ◽  
N.P. Ayugin ◽  
I.R. Salakhutdinov ◽  
...  

A model of a friction unit of a lathe in the form of a thin layer of material of a honeycomb structure is described to determine the dynamic characteristics of a movable carriage to guide joint. The analysis of the mathematical model of friction for different sliding pairs with varying load and sliding speed is performed. It is shown that the presence of an abrasive impurity in the lubrication of the guide enhances the effect of the low-frequency component of the carriage vibrations on the dynamics of the machine tool and the presence of pockets for retaining the lubricant in the joint of the guide makes it possible to reduce the amplitude of the longitudinal vibrations of the carriage to 30-50 %.


2020 ◽  
Author(s):  
Olga Dornyak ◽  
Ivan Bartenev ◽  
Mikhail Drapalyuk ◽  
Dmitry Stupnikov ◽  
Sergey Malyukov ◽  
...  

The design of a forest fire soil-thrower made to prevent and eliminate ground forest fires is presented. A mathematical model of machine movement has been developed, which enables to study the laws of the interaction process of the design with the soil. It is accepted that the machine has two degrees of freedom. The mathematical model has been obtained using the Lagrange equations of the second kind. The design and technological parameters of the forest fire soil-throwing machine, affecting the efficiency of its work, including mass and width of the grip of the ripper casing, mass, radius and frequency of rotation of the milling tool, the number and geometric parameters of the blades are taken into account. Mathematical model enables to determine the effect of these parameters on the characteristics of the movement of ripper casing and milling working body. A mathematical model is needed to synchronize the translational motion of the unit and the rotational motion of the rotor. Formulas have been obtained for the steady motion of the forest fire soil-thrower, that determine the hauling power of tractor and torque that ensures the operation of milling tools.


2021 ◽  
Vol 7 ◽  
Author(s):  
Jorge de-J. Lozoya-Santos ◽  
Juan C. Tudon-Martinez ◽  
Ruben Morales-Menendez ◽  
Olivier Sename ◽  
Andrea Spaggiari ◽  
...  

A methodology is proposed for designing a mathematical model for shock absorbers; the proposal is guided by characteristic diagrams of the shock absorbers. These characteristic diagrams (Force-Displacement, Velocity-Acceleration) are easily constructed from experimental data generated by standard tests. By analyzing the diagrams at different frequencies of interest, they can be classified into one of seven patterns, to guide the design of a model. Finally, the identification of the mathematical model can be obtained using conventional algorithms. This methodology has generated highly non-linear models for 2 degrees of freedom magneto-rheological dampers with high precision (2–10% errors).


Sign in / Sign up

Export Citation Format

Share Document