A novel 3D feature detection and matching approach for autonomous planetary landing mission

Author(s):  
Yang Tian ◽  
Meng Yu ◽  
Yingying Zhang

In an autonomous planetary/asteroid landing mission, landmark recognition is crucial to the success of the navigation system. The failure of feature detection or matching could lead to evident increase of bias in lander pose estimation. To this end, we propose a novel 3D feature detection and matching algorithm in this paper. The spherical harmonic coefficients are adopted to describe a 3D natural feature, and a relative distance set feature description approach is proposed as a supplement feature descriptor to enhance the distinctiveness of 3D feature. Simulation results demonstrate the effectiveness of our complete feature detection and matching algorithm in terms of feature detection rate and correct feature matching rate.

2010 ◽  
Vol 9 (4) ◽  
pp. 29-34 ◽  
Author(s):  
Achim Weimert ◽  
Xueting Tan ◽  
Xubo Yang

In this paper, we present a novel feature detection approach designed for mobile devices, showing optimized solutions for both detection and description. It is based on FAST (Features from Accelerated Segment Test) and named 3D FAST. Being robust, scale-invariant and easy to compute, it is a candidate for augmented reality (AR) applications running on low performance platforms. Using simple calculations and machine learning, FAST is a feature detection algorithm known to be efficient but not very robust in addition to its lack of scale information. Our approach relies on gradient images calculated for different scale levels on which a modified9 FAST algorithm operates to obtain the values of the corner response function. We combine the detection with an adapted version of SURF (Speed Up Robust Features) descriptors, providing a system with all means to implement feature matching and object detection. Experimental evaluation on a Symbian OS device using a standard image set and comparison with SURF using Hessian matrix-based detector is included in this paper, showing improvements in speed (compared to SURF) and robustness (compared to FAST)


2014 ◽  
Vol 543-547 ◽  
pp. 2670-2673
Author(s):  
Lei Cao ◽  
Di Liao ◽  
Bin Dang Xue

Aiming to solve the high computational and time consuming problem in SIFT feature matching, this paper presents an improved SIFT feature matching algorithm based on reference point. The algorithm starts from selecting a suitable reference point in the feature descriptor space when SIFT features are extracted. In the feature matching stage, this paper uses the Euclidean distance between descriptor vectors of the feature point to be matched and the reference point to make a fast filtration which removes most of the features that could not be matched. For the remaining SIFT features, Best-bin-first (BBF) algrithm is utilized to obtain precise matches. Experimental results demonstrate that the proposed matching algorithm achieves good effectiveness in image matching, and takes only about 60 percent of the time that the traditional matching algorithm takes.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 391
Author(s):  
Dah-Jye Lee ◽  
Samuel G. Fuller ◽  
Alexander S. McCown

Feature detection, description, and matching are crucial steps for many computer vision algorithms. These steps rely on feature descriptors to match image features across sets of images. Previous work has shown that our SYnthetic BAsis (SYBA) feature descriptor can offer superior performance to other binary descriptors. This paper focused on various optimizations and hardware implementation of the newer and optimized version. The hardware implementation on a field-programmable gate array (FPGA) is a high-throughput low-latency solution which is critical for applications such as high-speed object detection and tracking, stereo vision, visual odometry, structure from motion, and optical flow. We compared our solution to other hardware designs of binary descriptors. We demonstrated that our implementation of SYBA as a feature descriptor in hardware offered superior image feature matching performance and used fewer resources than most binary feature descriptor implementations.


2012 ◽  
Vol 239-240 ◽  
pp. 1232-1237 ◽  
Author(s):  
Can Ding ◽  
Chang Wen Qu ◽  
Feng Su

The high dimension and complexity of feature descriptor of Scale Invariant Feature Transform (SIFT), not only occupy the memory spaces, but also influence the speed of feature matching. We adopt the statistic feature point’s neighbor gradient method, the local statistic area is constructed by 8 concentric square ring feature of points-centered, compute gradient of these pixels, and statistic gradient accumulated value of 8 directions, and then descending sort them, at last normalize them. The new feature descriptor descend dimension of feature from 128 to 64, the proposed method can improve matching speed and keep matching precision at the same time.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6235
Author(s):  
Chengyi Xu ◽  
Ying Liu ◽  
Fenglong Ding ◽  
Zilong Zhuang

Considering the difficult problem of robot recognition and grasping in the scenario of disorderly stacked wooden planks, a recognition and positioning method based on local image features and point pair geometric features is proposed here and we define a local patch point pair feature. First, we used self-developed scanning equipment to collect images of wood boards and a robot to drive a RGB-D camera to collect images of disorderly stacked wooden planks. The image patches cut from these images were input to a convolutional autoencoder to train and obtain a local texture feature descriptor that is robust to changes in perspective. Then, the small image patches around the point pairs of the plank model are extracted, and input into the trained encoder to obtain the feature vector of the image patch, combining the point pair geometric feature information to form a feature description code expressing the characteristics of the plank. After that, the robot drives the RGB-D camera to collect the local image patches of the point pairs in the area to be grasped in the scene of the stacked wooden planks, also obtaining the feature description code of the wooden planks to be grasped. Finally, through the process of point pair feature matching, pose voting and clustering, the pose of the plank to be grasped is determined. The robot grasping experiment here shows that both the recognition rate and grasping success rate of planks are high, reaching 95.3% and 93.8%, respectively. Compared with the traditional point pair feature method (PPF) and other methods, the method present here has obvious advantages and can be applied to stacked wood plank grasping environments.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Spencer G. Fowers ◽  
Dah-Jye Lee

The important task of library book inventory, or shelf-reading, requires humans to remove each book from a library shelf, open the front cover, scan a barcode, and reshelve the book. It is a labor-intensive and often error-prone process. Technologies such as 2D barcode scanning or radio frequency identification (RFID) tags have recently been proposed to improve this process. They both incur significant upfront costs and require a large investment of time to fit books with special tags before the system can be productive. A vision-based automation system is proposed to improve this process without those prohibitively high upfront costs. This low-cost shelf-reading system uses a hand-held imaging device such as a smartphone to capture book spine images and a server that processes feature descriptors in these images for book identification. Existing color feature descriptors for feature matching typically use grayscale feature detectors, which omit important color edges. Also, photometric-invariant color feature descriptors require unnecessary computations to provide color descriptor information. This paper presents the development of a simple color enhancement feature descriptor called Color Difference-of-Gaussians SIFT (CDSIFT). CDSIFT is well suited for library inventory process automation, and this paper introduces such a system for this unique application.


2021 ◽  
Vol 13 (18) ◽  
pp. 3774
Author(s):  
Qinping Feng ◽  
Shuping Tao ◽  
Chunyu Liu ◽  
Hongsong Qu ◽  
Wei Xu

Feature description is a necessary process for implementing feature-based remote sensing applications. Due to the limited resources in satellite platforms and the considerable amount of image data, feature description—which is a process before feature matching—has to be fast and reliable. Currently, the state-of-the-art feature description methods are time-consuming as they need to quantitatively describe the detected features according to the surrounding gradients or pixels. Here, we propose a novel feature descriptor called Inter-Feature Relative Azimuth and Distance (IFRAD), which will describe a feature according to its relation to other features in an image. The IFRAD will be utilized after detecting some FAST-alike features: it first selects some stable features according to criteria, then calculates their relationships, such as their relative distances and azimuths, followed by describing the relationships according to some regulations, making them distinguishable while keeping affine-invariance to some extent. Finally, a special feature-similarity evaluator is designed to match features in two images. Compared with other state-of-the-art algorithms, the proposed method has significant improvements in computational efficiency at the expense of reasonable reductions in scale invariance.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1632
Author(s):  
Chien-Hung Kuo ◽  
Erh-Hsu Huang ◽  
Chiang-Heng Chien ◽  
Chen-Chien Hsu

In this paper, we propose an FPGA-based enhanced-SIFT with feature matching for stereo vision. Gaussian blur and difference of Gaussian pyramids are realized in parallel to accelerate the processing time required for multiple convolutions. As for the feature descriptor, a simple triangular identification approach with a look-up table is proposed to efficiently determine the direction and gradient of the feature points. Thus, the dimension of the feature descriptor in this paper is reduced by half compared to conventional approaches. As far as feature detection is concerned, the condition for high-contrast detection is simplified by moderately changing a threshold value, which also benefits the reduction of the resulting hardware in realization. The proposed enhanced-SIFT not only accelerates the operational speed but also reduces the hardware cost. The experiment results show that the proposed enhanced-SIFT reaches a frame rate of 205 fps for 640 × 480 images. Integrated with two enhanced-SIFT, a finite-area parallel checking is also proposed without the aid of external memory to improve the efficiency of feature matching. The resulting frame rate by the proposed stereo vision matching can be as high as 181 fps with good matching accuracy as demonstrated in the experimental results.


2021 ◽  
Author(s):  
Aikui Tian ◽  
Kangtao Wang ◽  
liye zhang ◽  
Bingcai Wei

Abstract Aiming at the problem of inaccurate extraction of feature points by the traditional image matching method, low robustness, and problems such as diffculty in inentifying feature points in area with poor texture. This paper proposes a new local image feature matching method, which replaces the traditional sequential image feature detection, description and matching steps. First, extract the coarse features with a resolution of 1/8 from the original image, then tile to a one-dimensional vector plus the positional encoding, feed them to the self-attention layer and cross-attention layer in the Transformer module, and finally get through the Differentiable Matching Layer and confidence matrix, after setting the threshold and the mutual closest standard, a Coarse-Level matching prediction is obtained. Secondly the fine matching is refined at the Fine-level match, after the Fine-level match is established, the image overlapped area is aligned by transforming the matrix to a unified coordinate, and finally the image is fused by the weighted fusion algorithm to realize the unification of seamless mosaic of images. This paper uses the self-attention layer and cross-attention layer in Transformers to obtain the feature descriptor of the image. Finally, experiments show that in terms of feature point extraction, LoFTR algorithm is more accurate than the traditional SIFT algorithm in both low-texture regions and regions with rich textures. At the same time, the image mosaic effect obtained by this method is more accurate than that of the traditional classic algorithms, the experimental effect is more ideal.


Author(s):  
Suresha .M ◽  
. Sandeep

Local features are of great importance in computer vision. It performs feature detection and feature matching are two important tasks. In this paper concentrates on the problem of recognition of birds using local features. Investigation summarizes the local features SURF, FAST and HARRIS against blurred and illumination images. FAST and Harris corner algorithm have given less accuracy for blurred images. The SURF algorithm gives best result for blurred image because its identify strongest local features and time complexity is less and experimental demonstration shows that SURF algorithm is robust for blurred images and the FAST algorithms is suitable for images with illumination.


Sign in / Sign up

Export Citation Format

Share Document