Effects of a sweeping jet actuator on aerodynamic performance in a linear turbine cascade with tip clearance

Author(s):  
Shaowen Chen ◽  
Weihang Li ◽  
Qinghe Meng ◽  
Zhihua Zhou ◽  
Songtao Wang

Sweeping jet actuator as a fresh attempt has been applied in controlling flow separations and improving aerodynamic performances in a linear turbine cascade with tip clearance. In the present study, the oscillating jet process of sweeping jet actuator in the tip clearance was illustrated and a potential advantage from a system integration perspective was validated by an unsteady numerical study. The excitation frequencies and excitation modes were also investigated for achieving the further understanding of the mechanism of sweeping jet actuator for controlling flow separations. By using sweeping jet actuator, the flow separation near the upper endwall was delayed and the flow loss at the outlet of the cascade was reduced. For the optimal case, the time-averaged total pressure loss decreased by about 11.7% with the jet flow rate of only 0.35% of the inlet flow rate. In addition, it was found that there exists an optimum frequency to achieve the optimum controlling effects on the flow separations. Because of the blockage of tip leakage flow at the local gap by the high-momentum fluid from sweeping jet actuator, the controlling effects on the tip leakage vortex loss were better than that on the passage vortex loss. Through the use of four excitation modes in this study, the total pressure losses at the outlet were all reduced in different degrees. Under the present boundary conditions and working parameters, the unsteady controlling mode of sweeping jet actuator was found to perform much better than the other steady modes.

Author(s):  
Yunfeng Fu ◽  
Fu Chen ◽  
Cong Chen ◽  
Yanping Song

A novel leakage flow control strategy with honeycomb seal applied on the tip of the rotor blades in a highly-loaded turbine cascade is proposed. The numerical method is used to study the tip leakage flow in a highly-loaded turbine cascades with flat tip and with honeycomb seal structure, the mechanism of honeycomb tip on inhibiting leakage flow is analyzed, the influence of various relative gap heights is also been investigated. The discussions of the action of the honeycomb-tip structure in reducing leakage flow and improving the turbine efficiency provide the according for control methods of tip leakage flow. Through the comparative study among three different tip structures of honeycomb tip, honeycomb casing and flat tip, the results show that both honeycomb tip and honeycomb casing inhibit the leakage flow effectively, but honeycomb tip has positive effect on reducing the flow loss in cascade. For the cascade with honeycomb tip, on one hand, the vortices rolled up in the regular hexagon honeycomb cavities dissipate the energy of the tip leakage flow, and the range of influence of the vortices is nearly one third of the tip clearance height. On the other hand, the radial jets caused by the honeycomb obstruct the tip leakage flow like a “pneumatic fence”, resulting in weaker leakage flow and less leakage flow rate. Besides, the honeycomb tip reduces the scale of the leakage vortex, thus the leakage loss also decreases. Compared with the flat tip cascade at the clearance height of 1%H, the honeycomb tip cascade with the same clearance height obtains decrease of the leakage flow rate and leakage flow speed in circumference by 10.16% and 20%. As a result, the leakage vortex in honeycomb tip cascade is undermined, the loss is reduced by nearly 4.43%. Considering the abradable property of the honeycomb seal that can protect the blade tips from damage, the cascade with honeycomb tip structure can obtain a smaller clearance height and achieve better sealing effect. Compared to cascade with the flat tip at the clearance height of 2%H, the amount of leakage flow using inlet flow in the honeycomb tip cascades decreases by 17.33%, 36.63% and 54.79% at the clearance heights of 2%H, 1.5%H and 1%H, the losses related to the leakage flow is reduced by nearly 5.71%, 14.33% and 25.24%, respectively.


Author(s):  
Jiahui Jin ◽  
Yanping Song ◽  
Jianyang Yu ◽  
Fu Chen

Tip geometry modification is frequently used to suppress the tip leakage flow in the turbine cascade however a universally beneficial tip geometry modification design has not been fully discovered. In this paper, the two-surface coupling arbitrary blade tip design method in three-dimensional physical space which satisfies the simple trigonometric function law is proposed and the mathematical parametric description is presented. The effects of different arbitrary blade tips on tip leakage flow have been studied numerically in a highly loaded axial turbine cascade. The aerodynamic performance of different tips is assessed by the tip leakage mass flow rate and the total pressure loss coefficient at the exit section. The Kriging model and genetic optimization algorithm are used to optimize the arbitrary blade tips to obtain the optimal arbitrary blade tip. Compared with the flat tip, the tip leakage mass flow rate is decreased by 10.57% and the area-average total pressure loss coefficient at the exit section is reduced by 8.91% in the optimal arbitrary blade tip.


Author(s):  
Brian M. T. Tang ◽  
Marko Bacic ◽  
Peter T. Ireland

This paper presents a computational investigation into the impact of cooling air injected through the stationary over-tip turbine casing on overall turbine efficiency. The high work axial flow turbine is representative of the high pressure turbine of a civil aviation turbofan engine. The effect of active modulation of the cooling air is assessed, as well as that of the injection locations. The influence of the through-casing coolant injection on the turbine blade over-tip leakage flow and the associated secondary flow features are examined. Transient (unsteady) sliding mesh simulations of a one turbine stage rotor-stator domain are performed using periodic boundary conditions. Cooling air configurations with a constant total pressure air supply, constant mass flow rate and actively controlled total pressure supply are assessed for a single geometric arrangement of cooling holes. The effects of both the mass flow rate of cooling air and the location of its injection relative to the turbine rotor blade are examined. The results show that all of the assessed cooling configurations provided a benefit to turbine row efficiency of between 0.2 and 0.4 percentage points. The passive and constant mass flow rate configurations reduced the over-tip leakage flow, but did so in an inefficient manner, with decreasing efficiency observed with increasing injection mass flow rate beyond 0.6% of the mainstream flow, despite the over-tip leakage mass flow rate continuing to reduce. By contrast, the active total pressure controlled injection provided a more efficient manner of controlling this leakage flow, as it permitted a redistribution of cooling air, allowing it to be applied in the regions close to the suction side of the blade tip which more directly reduced over-tip leakage flow rates and hence improved efficiency. Cooling air injected close to the pressure side of the rotor blade was less effective at controlling the leakage flow, and was associated with increased aerodynamic loss in the passage vortex.


Author(s):  
Yunfeng Fu ◽  
Fu Chen ◽  
Huaping Liu ◽  
Yanping Song

In this paper, the effect of a novel honeycomb tip on suppressing tip leakage flow in a highly-loaded turbine cascade has been experimentally and numerically studied. The research focuses on the mechanisms of honeycomb tip on suppressing tip leakage flow and affecting the secondary flow in the cascade, as well as the influences of different clearance heights on leakage flow characteristics. In addition, two kinds of local honeycomb tip structures are pro-posed to explore the positive effect on suppressing leakage flow in simpler tip honeycomb structures. Based on the experimental and numerical results, the physical processes of tip leakage flow and its interaction with main flow are analyzed, the following conclusions can be obtained. Honeycomb tip rolls up a number of small vortices and radial jets in regular hexagonal honeycomb cavities, increasing the flow resistance in the clearance and reducing the velocity of leakage flow. As a result, the structure of honeycomb tip not only suppresses the leakage flow effectively, but also has positive effect on reducing the associated losses in cascade by reducing the strength of leakage vortex. Compare to the flat tip cascade at 1%H gap height, the relative leakage flow in honeycomb tip cascade reduces from 3.05% to 2.73%, and the loss at exit section is also decreased by 10.63%. With the increase of the gap height, the tip leakage flow and loss have variations of direct proportion with it, but their growth rates in the honeycomb tip cascade are smaller. Consider the abradable property of the honeycomb seal, a smaller gap height is allowed in the cascade with honeycomb tip, and that means honeycomb tip has better effect on suppressing leakage flow. Two various local honeycomb tip structures has also been discussed. It shows that local raised honeycomb tip has better suppressing leakage flow effect than honeycomb tip, while local concave honeycomb tip has no more effect than honeycomb tip. Compare to flat tip cascade, the leakage flow in honeycomb tip cascade, local concave tip cascade and local raised honeycomb tip cascade decrease by nearly 17.33%, 15.51% and 30.86% respectively, the losses at exit section is reduced by 13.38%, 12% and 28.17% respectively.


Author(s):  
Kai Zhou ◽  
Chao Zhou

In turbines, secondary vortices and tip leakage vortices develop and interact with each other. In order to understand the flow physics of vortices interaction, the effects of incoming vortex on the downstream tip leakage flow are investigated in terms of the aerodynamic performance in a turbine cascade. Experimental, numerical and analytical methods are used. In the experiment, a swirl generator was used upstream near the casing to generate the incoming vortex, which interacted with the tip leakage vortex in the turbine cascade. The swirl generator was located at ten different pitchwise locations to simulate the quasi-steady effects. In the numerical study, a Rankine-like vortex was defined at the inlet of the computational domain to simulate the incoming swirling vortex. Incoming vortices with opposite directions were investigated. The vorticity of the positive incoming swirling vortex has a large vector in the same direction as that of the tip leakage vortex. In the case of the positive incoming swirling vortex, the vortex mixes with the tip leakage vortex to form one vortex near the tip as it transports downstream. The vortices interaction reduces the vorticity of the flow near the tip, as well as the loss by making up for the streamwise momentum within the tip leakage vortex core. In contrast, the negative incoming swirling vortex has little effects on the tip leakage vortex and the loss. As the negative incoming swirling vortex transports downstream, it is separated from the tip leakage vortex and forms two vortices. A triple-vortices-interaction kinetic analytical model and one-dimensional mixing model are proposed to explain the mechanism of vortex interaction on the aerodynamic performance.


Author(s):  
Ali Akturk ◽  
Cengiz Camci

Ducted fans that are popular choices in vertical take-off and landing (VTOL) unmanned aerial vehicles (UAV) offer a higher static thrust/power ratio for a given diameter than open propellers. Although ducted fans provide high performance in many VTOL applications, there are still unresolved problems associated with these systems. Fan rotor tip leakage flow is a significant source of aerodynamic loss for ducted fan VTOL UAVs and adversely affects the general aerodynamic performance of these vehicles. The present study utilized experimental and computational techniques in a 22″ diameter ducted fan test system that has been custom designed and manufactured. Experimental investigation consisted of total pressure measurements using Kiel total pressure probes and real time six-component force and torque measurements. The computational technique used in this study included a 3D Reynolds-Averaged Navier Stokes (RANS) based CFD model of the ducted fan test system. RANS simulations of the flow around rotor blades and duct geometry in the rotating frame of reference provided a comprehensive description of the tip leakage and passage flow. The experimental and computational analysis performed for various tip clearances were utilized in understanding the effect of the tip leakage flow on aerodynamic performance of ducted fans used in VTOL UAVs. The aerodynamic measurements and results of the RANS simulations showed good agreement especially near the tip region.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Yunfeng Fu ◽  
Fu Chen ◽  
Huaping Liu ◽  
Yanping Song

In this paper, the effect of a novel honeycomb tip on suppressing tip leakage flow in turbine cascade has been experimentally and numerically studied. Compared to the flat tip cascade with 1%H blade height, the relative leakage flow in honeycomb tip cascade reduces from 3.05% to 2.73%, and the loss also decreases by 8.24%. For honeycomb tip, a number of small vortices are rolled up in the regular hexagonal honeycomb cavities to dissipate the kinetic energy of the clearance flow, and the fluid flowing into and out the cavities create aerodynamic interceptions to the upper clearance flow. As a result, the flow resistance in the clearance increased and the velocity of leakage flow reduced. As the gap height increases, the tip leakage flow and loss changes proportionally, but the growth rate in the honeycomb tip cascade is smaller. Considering its wear resistance of the honeycomb seal, a smaller gap height is allowed in the cascade with honeycomb tip, and that means honeycomb tip has better effect on suppressing leakage flow. Part honeycomb tip structure also retains the effect of suppressing leakage flow. It shows that locally convex honeycomb tip has better suppressing leakage flow effect than the whole honeycomb tip, but locally concave honeycomb tip is slightly less effective.


Author(s):  
Shaowen Chen ◽  
Qinghe Meng ◽  
Weihang Li ◽  
Zhihua Zhou ◽  
Songtao Wang

The effects of axially non-uniform clearances on the tip leakage flow and aerodynamic performance in a linear turbine cascade with a cavity squealer tip were investigated in this study with the objective of improving the flow loss and tip flow field structure. A calibrated five-hole probe was used for the measurement of three-dimensional flows downstream of the cascade. The method of oil-flow visualization was used to show the endwall flow field structure. The distribution of endwall static pressure was measured particularly by using the special moveable endwall. The axially non-uniform clearance, as a novel strategy that has a non-negligible influence on tip clearance flow and clearance leakage loss, may become a potential technology for improving aerodynamic performance in turbine cascades. By using the expanding clearance, the flow loss at the outlet is reduced effectively and an apparent improvement of aerodynamic performance in the turbine cascade is gained. Under the tip clearances of 0.75% H and 2% H, the maximum reduction of overall total pressure loss coefficient at the outlet is separately about 2.3% and 3.5% compared with the uniform clearance. The shrinkage of the buffer zone is considered to be able to weaken the interaction of the tip leakage vortex and passage vortex and thus reduce the loss of passage vortex. For the shrinking clearance, a noticeable decline in the aerodynamic performance of turbine cascade with cavity squealer tip is exhibited at both on and off design conditions in contrast to the uniform clearance. In addition, the effects of axially non-uniform clearances on the aerodynamic performance at off-design conditions have been investigated.


Author(s):  
Jingjun Zhong ◽  
Shaobing Han ◽  
Peng Sun

The effect of tip winglet on the aerodynamic performance of compressor cascade are mainly determined by the location of the tip winglet, the tip winglet geometry, the size of tip clearance, and the aerodynamic parameters of the cascade. In this paper, an extensive numerical study which includes three aspects has been carried out to investigate the effects of these influencing factors in a highly-loaded compressor cascade in order to give the guidance for the application of tip winglet to control the tip leakage in modern highly-loaded compressor. Firstly, the numerical method is validated by comparing the numerical results with available measured data. Results show that the numerical procedure is valid and accurate. Then, the cascade flow fields are interrogate to identify the physical mechanism of how suction-side winglet improve the cascade flow behavior. It is found that a significant tip leakage mass flow rate and aerodynamic loss reduction is possible by using proper tip winglet located near the suction side corner of the blade tip. Finally, an optimum width of the suction-side tip winglet is obtained by comparing the compressor performance with different clearances and incidences. The use of the suction-side winglet can reduce the pressure difference between the pressure and the suction sides of the blade and tip leakage velocity ratio. And the winglet also can compact the tip leakage vortex structure, which is benefit to decrease the loss of the tip secondary flow mixing with the primary flow.


Author(s):  
Hark-Jin Eum ◽  
Shin-Hyoung Kang

Effects of tip clearance on through flows and performance of a centrifugal compressor impeller with six different tip clearances were numerically studied using CFX-TASCflow. The flow structures inside the impeller of a centrifugal compressor were visualized observing streamlines starting the leading edge of blade tips. The calculated results at the impeller exit were circumferential averaged for quantitative discussion. Flow, pressure and entropy contours at the impeller exit were largely influenced by the tip leakage flow. Tip clearance effect on the performance was decomposed into inviscid and viscous components using one-dimensional relations expressed in terms of the specific work reduction and the additional entropy generation. Both inviscid and viscous effects affected performance to similar extent, while efficiency drop was mainly influenced by viscous loss of the tip leakage flow. Performance reduction and efficiency drop due to tip clearance was proportional to the ratio of tip clearance to blade height. A simple model suggested in the present study predicts performance and efficiency drop quite successfully.


Sign in / Sign up

Export Citation Format

Share Document