Design rules for timber log reciprocal floors, based on mass optimization under stiffness constraint

2021 ◽  
pp. 095605992110416
Author(s):  
Pierre Latteur ◽  
Julien Geno ◽  
Marie Vandamme

Building with raw timber allows to reduce the price of construction and to make it more competitive with respect to concrete or steel construction. For a few years now, the combination of parametric design and robotic tools make possible the fast and precise milling of timber logs for their accurate connection. However, the spans are quickly limited by the logs length. In this context, reciprocal structures are relevant, since they allow to build large spans structures with short beams. Finally, the architectural interest of reciprocal structures is not to prove. However, the choice of the most efficient reciprocal frame, as well as its structural relevance in terms of mass and stiffness is, most of the time, ruled by subjective considerations. This paper focuses on rectangular floors composed of reciprocal moduli and has three objectives: (1) to develop a general mass and stiffness optimization method for reciprocal floors, which is not only necessary to limit the price, but also to reduce their thickness, (2) to define design rules for reciprocal floors, in particular for the choice of the best engagement ratio, and (3) to compare the structural efficiency of reciprocal floors with the one of “traditional” floors with parallel logs. Coming from a dimensionless transformation of the equilibrium equations, the results of this article will thus give the designers keys to better design reciprocal structures, evaluate their structural performances and relevance, and justify their choices.

Author(s):  
Myung-Jin Choi ◽  
Min-Geun Kim ◽  
Seonho Cho

We developed a shape-design optimization method for the thermo-elastoplasticity problems that are applicable to the welding or thermal deformation of hull structures. The point is to determine the shape-design parameters such that the deformed shape after welding fits very well to a desired design. The geometric parameters of curved surfaces are selected as the design parameters. The shell finite elements, forward finite difference sensitivity, modified method of feasible direction algorithm and a programming language ANSYS Parametric Design Language in the established code ANSYS are employed in the shape optimization. The objective function is the weighted summation of differences between the deformed and the target geometries. The proposed method is effective even though new design variables are added to the design space during the optimization process since the multiple steps of design optimization are used during the whole optimization process. To obtain the better optimal design, the weights are determined for the next design optimization, based on the previous optimal results. Numerical examples demonstrate that the localized severe deviations from the target design are effectively prevented in the optimal design.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Teng Zhou ◽  
Yifan Xu ◽  
Zhenyu Liu ◽  
Sang Woo Joo

Topology optimization method is applied to a contraction–expansion structure, based on which a simplified lateral flow structure is generated using the Boolean operation. A new one-layer mixer is then designed by sequentially connecting this lateral structure and bent channels. The mixing efficiency is further optimized via iterations on key geometric parameters associated with the one-layer mixer designed. Numerical results indicate that the optimized mixer has better mixing efficiency than the conventional contraction–expansion mixer for a wide range of the Reynolds number.


Author(s):  
Johan Malmqvist

Abstract This paper describes a system for parametric design and optimization of complex products. In the system, the use of knowledge-based and mathematical programming methods is combined. The motivation is that while knowledge-based methods are well suited for modeling products, they are insufficient when dealing with design problems that can be given an optimization formulation. This weakness was approached by including the information necessary for stating an optimization problem in the product models. A system optimization method can then be applied. The system also performs sensitivity analysis and has an interactive optimization module. The use of the system is illustrated by an example; the design and optimization of a two-speed gearbox.


2019 ◽  
Vol 116 (2) ◽  
pp. 211
Author(s):  
Shengli Wu ◽  
Xiaobo Zhai ◽  
Tiankai Song

A sintering burden blending model is an intelligent system used to obtain the optimal blending proportions of burdens with minimal sintering burden cost. In this study, micro-sintering and sinter pot tests were first carried out to clarify the quantitative relationship between the shatter index (SI) of the sinter and high-temperature characteristics (HTCs) of the ore blends. The result shows that the lowest assimilation temperature (LAT) plays a dual role in SI, whereas the index of liquid phase fluidity (ILF) and compressive strength of the bonding phase (CSB) have positive effects on SI. The effect of the ILF is the largest. Based on the one-step optimization method, suitable ranges of room-temperature characteristics (RTCs) of ore blends, obtained relationship between sinter strength and HTCs of ore blends, sintering theory, and bisection and simplex algorithms, the proposed sintering burden blending model is established. The validation for the model shows that it is effective at utilizing iron ore resources, maintaining high strength of the sinter, while reducing burden costs.


2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Wen-ao Cao ◽  
Huafeng Ding ◽  
Donghao Yang

This paper presents an approach to compliance modeling of three-translation and two-rotation (3T2R) overconstrained parallel manipulators, especially for those with multilink and multijoint limbs. The expressions of applied wrenches (forces/torques) exerted on joints are solved with few static equilibrium equations based on screw theory. A systematic method is proposed for deriving the stiffness model of a limb with considering the couplings between the stiffness along the constrained wrench and the one along the actuated wrench based on strain energy analysis. The compliance model of a 3T2R overconstrained parallel mechanism is established based on stiffness models of limbs and the static equilibrium equation of the moving platform. Comparisons show that the compliance matrix obtained from the method is close to the one obtained from a finite-element analysis (FEA) model. The proposed method has the characteristics of involving low computational efforts and considering stiffness couplings of each limb.


2019 ◽  
Vol 256 ◽  
pp. 05003
Author(s):  
Tian Liu ◽  
Yongfu Chen ◽  
Zhiyong Jin ◽  
Kai Li ◽  
Zhenting Wang ◽  
...  

The graph optimization has become the mainstream technology to solve the problems of SLAM (simultaneous localization and mapping). The pose graph in the graph based SLAM is consisted with a series of nodes and edges that connect the adjacent or related poses. With the widespread use of mobile robots, the scale of pose graph has rapidly increased. Therefore, optimizing a large-scale pose graph is the bottleneck of application of graph based SLAM. In this paper, we propose an optimization method basing on the decomposition of pose graph, of which we have noticed the sparsity. With the extraction of the Single-chain and the Parallel-chain, the pose graph is decomposed into many small subgraphs. Compared with directly processing the original graph, the speed of calculation is accelerated by separately optimizing the subgraph, which is because the computational complexity is increasing exponentially with the increase of the graph’s scale. This method we proposed is very suitable for the current multi-threaded framework adopted in the mainstream SLAM, which separately calculate the subgraph decomposed by our method, rather than the original optimization requiring a large block of time in once may cause CPU obstruction. At the end of the paper, our algorithm is validated with the open source dataset of the mobile robot, of which the result illustrates our algorithm can reduce the one-time resource consumption and the time consumption of the calculation with the same map-constructing accuracy.


2019 ◽  
Vol 11 (24) ◽  
pp. 7096
Author(s):  
Ho-Jeong Kim ◽  
Chang-Seok Yang ◽  
Hyeun Jun Moon

This study presents a multi-objective parametric design tool for four-axis surround-type movable shading device using solar position tracking in Seoul, South Korea. In order to explore large numbers of possible forms of shades, generic algorithms are utilized with real-time simulation of the performative criteria such as solar radiation, daylight glare probability (DGP), and solar shielding rate on window surface. This study outlines a workflow using a multi-objective engine called Octopus that runs within Grasshopper 3D, a parametric design tool, in addition to environmental performance simulation plug-in Ladybug. The workflow utilizes a performance-based design tool, which allows the designer to explore, sort, and filter solutions, and visually compare alternative solutions in terms of energy saving and indoor daylight quality in order to determine the optimal form of shade changing its shape every one hour. The result of deriving and analyzing the optimal shade shape through the genetic algorithm proposed in this study is as follows: On the one hand, on the summer solstice, shade shapes with shielding areas of almost 100% should be derived to achieve the most effective reduction of the direct solar radiation. The proposed movable shading device reduced direct solar radiation by 52.40% and 57.20% in the south- and east-facing windows, respectively. On the other hand, in winter when solar heat gain is important, the absence of sunshade is optimal in terms of heating load. However, in order to improve the indoor light environment, it is confirmed that it is possible to derive a certain shape of sunshade according to the sun’s trajectory. On the winter solstice, the problem of glare arises from 10:00 to 15:00 in the south and 10:00 in the east. Therefore, the proposed four-axis movable shading device can be configured to have a minimum protrusion length satisfying DGP less than 0.35 in winter.


2001 ◽  
Vol 2001.50 (0) ◽  
pp. 1-2
Author(s):  
Yasuaki TSURUMI ◽  
Toshiaki NAKAGAWA ◽  
Nobuyuki MORI ◽  
Hiroshi YAMAKAWA

Author(s):  
Takayuki Yamada ◽  
Shintaro Yamasaki ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

Compliant mechanisms are designed to be flexible to achieve a specified motion as a mechanism. Such mechanisms can function as compliant thermal actuators in micro-electromechanical systems by intentionally designing configurations that exploit thermal expansion effects in elastic material when appropriate portions of the mechanism structure are heated or are subjected to an electric potential. This paper presents a new structural optimization method for the design of compliant thermal actuators based on the level set method and the finite element method (FEM). First, an optimization problem is formulated that addresses the design of compliant thermal actuators considering the magnitude of the displacement at the output location. Next, the topological derivatives that are used when introducing holes during the optimization process are derived. Based on the optimization formulation, a new structural optimization algorithm is constructed that employs the FEM when solving the equilibrium equations and updating the level set function. The re-initialization of the level set function is performed using a newly developed geometry-based re-initialization scheme. Finally, several design examples are provided to confirm the usefulness of the proposed structural optimization method.


2015 ◽  
Vol 7 (4) ◽  
Author(s):  
Wen-Yi Lin

A two-phase synthesis method is described, which is capable of solving quite challenging path generation problems. A combined discrete Fourier descriptor (FD) is proposed for shape optimization, and a geometric-based approach is used for the scale–rotation–translation synthesis. The combined discrete FD comprises three shape signatures, i.e., complex coordinates (CCs), centroid distance (CD), and triangular centroid area (TCA), which can capture greater similarity of shape. The genetic algorithm–differential evolution (GA–DE) optimization method is used to solve the optimization problem. The proposed two-phase synthesis method, based on the combined discrete FD, successfully solves the challenging path generation problems with a relatively small number of function evaluations. A more accurate path shape can be obtained using the combined FD than the one-phase synthesis method. The obtained coupler curves approximate the desired paths quite well.


Sign in / Sign up

Export Citation Format

Share Document