Aerothermal and aerodynamic performance of turbine blade squealer tip under the influence of guide vane passing wake

Author(s):  
Bo Zhang ◽  
Xiaoqing Qiang

In this paper, the performance of the turbine blade squealer tip has been studied detailed aimed to highlight the impact of the upstream guide vane passing wake. The first stage of GE-E3 high-pressure turbine has been employed to perform the three-dimensional simulation and the computational domain has been scaled based on the domain scaling method. Boundary conditions are consistent with operating conditions of the annular cascade testing. Circumferential averaged and realistic non-uniform interface conditions have been used to obtain steady and unsteady characteristics respectively. The validation of the turbulent model and mesh independent test has been conducted detailed in previous work. Three squealer tips, including two widths and heights, have been designed and investigated to understand its influence. Results show that the aerothermal performance of the squealer tip is remarkably influenced by the upstream passing wake. Although steady and time-averaged results have a good agreement, the variation of instantaneous heat transfer coefficient (HTC) would be over 30%, especially on the Cavity Floor region. Changing the geometry of the squealer also has different impacts on both steady and unsteady performance. The unsteady aerodynamic has relatively small fluctuation within 10%, and the distribution of steady and time-averaged leakage flow as well as total pressure loss coefficient still have a satisfactory agreement.

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5127
Author(s):  
Tomasz A. Prokop ◽  
Grzegorz Brus ◽  
Shinji Kimijima ◽  
Janusz S. Szmyd

In this work, a three-dimensional microstructure-scale model of a Solid Oxide Fuel Cell’s Positive-Electrolyte-Negative assembly is applied for the purpose of investigating the impact of decreasing the electrolyte thickness on the magnitude, and the composition of electrochemical losses generated within the cell. Focused-Ion-Beam Scanning Electron Microscopy reconstructions are used to construct a computational domain, in which charge transport equations are solved. Butler–Volmer model is used to compute local reaction rates, and empirical relationships are used to obtain local conductivities. The results point towards three-dimensional nature of transport phenomena in thin electrolytes, and electrode-electrolyte interfaces.


2003 ◽  
Vol 125 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Ali Merchant

The impact of boundary layer aspiration, or suction, on the aerodynamic design and performance of turbomachinery airfoils is discussed in this paper. Aspiration is studied first in the context of a controlled diffusion cascade, where the effect of discrete aspiration on loading levels and profile loss is computationally investigated. Blade design features which are essential in achieving high loading and minimizing the aspiration requirement are described. Design studies of two aspirated compressor stages and an aspirated turbine exit guide vane using three dimensional Navier-Stokes calculations are presented. The calculations show that high loading can be achieved over most of the blade span with a relatively small amount of aspiration. Three dimensional effects close to the endwalls are shown to degrade the performance to varying degrees depending on the loading level.


2003 ◽  
Vol 9 (6) ◽  
pp. 385-391
Author(s):  
Jörg Bergner ◽  
Dietmar K. Hennecke ◽  
Martin Hoeger ◽  
Karl Engel

For Darmstadt University of Technology's axial singlestage transonic compressor rig, a new three-dimensional aft-swept rotor was designed and manufactured at MTU Aero Engines in Munich, Germany. The application of carbon fiber–reinforced plastic made it possible to overcome structural constraints and therefore to further increase the amount of lean and sweep of the blade. The aim of the design was to improve the mechanical stability at operation that is close to stall.To avoid the hazard of rubbing at the blade tip, which is found especially at off-design operating conditions close to the stability limit of the compression system, aft-sweep was introduced together with excessive backward lean.This article reports an investigation of the impact of various amounts of lean on the aerodynamic behavior of the compressor stage on the basis of steady-state Navier-Stokes simulations. The results indicate that high backward lean promotes an undesirable redistribution of mass flow and gives rise to a basic change in the shock pattern, whereas a forward-leaning geometry results in the development of a highly back-swept shock front. However, the disadvantage is a decrease in shock strength and efficiency.


Author(s):  
M. Funes-Gallanzi ◽  
P. J. Bryanston-Cross ◽  
K. S. Chana

The quantitative whole field flow visualization technique of PIV has over the last few years been successfully demonstrated for transonic flow applications. A series of such measurements has been made at DRA Pyestock. Several of the development stages critical to a full engine application of the work have now been achieved using the Isentropic Light Piston Cascade (ILPC) test facility operating with high inlet turbulence levels: • A method of seeding the flow with 0.5μm diameter styrene particles has provided an even coverage of the flow field. • A method of projecting a 1 mm thick high power Nd/YAG laser light sheet within the turbine stator cascade. This has enabled a complete instantaneous intra-blade velocity mapping of the flow field to be visualized, by a specially developed diffraction-limited optics arrangement. • Software has been developed to automatically analyze the data. Due to the sparse nature of the data obtained, a spatial approach to the extraction of the velocity vector data was employed. • Finally, a comparison of the experimental results with those obtained from a three-dimensional viscous flow program of Dawes; using the Baldwin-Lomax model for eddy viscosity and assuming fully turbulent flow. The measurements provide an instantaneous quantitative whole field visualization of a high-speed unsteady region of flow in a highly three-dimensional nozzle guide vane; which has been successfully compared with a full viscous calculation. This work represents the first such measurements to be made in a full-size transonic annular cascade at engine representative conditions.


Author(s):  
Chang-Fa An ◽  
Seyed Mehdi Alaie ◽  
Michael S. Scislowicz

Driven by fluid dynamics principles, the concept for buffeting reduction, a cavity installed at the leading edge of the sunroof opening, is analyzed. The cavity provides a room to hold the vortex, shed from upstream, and prevents the vortex from escaping and from directly intruding into the cabin. The concept has been verified by means of a two dimensional simulation for a production SUV using the CFD software — FLUENT. The simulation results show that the impact of the cavity is crucial to reduce buffeting. It is shown that the buffeting level may be reduced by 3 dB by adding a cavity to the sunroof configuration. Therefore, the cavity could be considered as a means of buffeting reduction, in addition to the three currently-known concepts: wind deflector, sunroof glass comfort position and cabin venting. Thorough understanding of the buffeting mechanism helps explain why and how the cavity works to reduce buffeting. Investigation of the buffeting-related physics provides a deep insight into the flow nature and, therefore, a useful hint to geometry modification for buffeting reduction. The buffeting level may be further reduced by about 4 dB or more by cutting the corners of the sunroof opening into smooth ramps, guided by ideas coming from careful examining the physics of flow. More work including three dimensional simulation and wind tunnel experiment should follow in order to develop more confidence in the functionality of the cavity to hopefully promote this idea to the level that it can be utilized in a feasible way to address sunroof buffeting.


Author(s):  
Murray Rudman ◽  
Paul Cleary ◽  
Justin Leontini ◽  
Matthew Sinnott ◽  
Mahesh Prakash

Full three-dimensional simulation of the impact of a rogue wave on a semi-submersible platform is undertaken using the Smoothed Particle Hydrodynamics (SPH) technique. Two different mooring configurations are considered: A Tension Leg Platform (TLP) system and a Taut Spread Mooring (TSM) system. It is seen that for a wave impact normal to the platform side, the heave and surge responses of the platform are significantly different for the two mooring systems. The TLP system undergoes large surge but comparatively smaller heave motions than the TSM system. The degree of pitch is very similar. The total tension in the mooring cables is approximately four times higher in the TSM system and exceeds the strength of the cables used in the simulation. SPH is seen to be an attractive alternative to standard methods for simulating the coupled interaction of highly non-linear breaking waves and structural motion.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8327
Author(s):  
Roberto Pacciani ◽  
Michele Marconcini ◽  
Francesco Bertini ◽  
Simone Rosa Taddei ◽  
Ennio Spano ◽  
...  

This paper presents an assessment of machine-learned turbulence closures, trained for improving wake-mixing prediction, in the context of LPT flows. To this end, a three-dimensional cascade of industrial relevance, representative of modern LPT bladings, was analyzed, using a state-of-the-art RANS approach, over a wide range of Reynolds numbers. To ensure that the wake originates from correctly reproduced blade boundary-layers, preliminary analyses were carried out to check for the impact of transition closures, and the best-performing numerical setup was identified. Two different machine-learned closures were considered. They were applied in a prescribed region downstream of the blade trailing edge, excluding the endwall boundary layers. A sensitivity analysis to the distance from the trailing edge at which they are activated is presented in order to assess their applicability to the whole wake affected portion of the computational domain and outside the training region. It is shown how the best-performing closure can provide results in very good agreement with the experimental data in terms of wake loss profiles, with substantial improvements relative to traditional turbulence models. The discussed analysis also provides guidelines for defining an automated zonal application of turbulence closures trained for wake-mixing predictions.


Author(s):  
Setyo Nugroho ◽  
Ciptananda Citrahardhani

The single stage ejector is used to extract the Non CondensableGas (NCG) in the condenser using the working principle of the Venturi tube. Three dimensional computational simulation of the ejector according to the operating conditions was conducted to determine the flow in the ejector. Motive steam entering through the convergent – divergent nozzle with increasing flow velocity so that the low pressure exist around the nozzle. Comparison is done also in a two dimensional simulation to know the differences occurring phenomena and flow inside ejector. Different simulation results obtained between two dimensional and three dimensional simulation. Reverse flow which occurs in the mixing chamber made the static pressure in the area has increased dramatically. Then the variation performed on Exit Nozzle Position (NXP) to determine the changes of the flow of the NCG and the vacuum level of the ejector.Keywords: Ejector, NCG, CFD, Compressible flow.


Author(s):  
Richard B. Medvitz ◽  
Michael L. Jonson ◽  
James J. Dreyer ◽  
Jarlath McEntee

High resolution RANS CFD analysis is performed to support the design and development of the Ocean Renewable Power Company (ORPC) TidGen™ multi-directional tidal turbine. Two-dimensional and three-dimensional unsteady, moving-mesh CFD is utilized to parameterize the device performance and to provide guidance for device efficiency improvements. The unsteady CFD analysis was performed using a well validated, naval hydrodynamic CFD solver and implementing dynamic overset meshes to perform the relative motion between geometric components. This dynamic capability along with the turbulence model for the expected massively separated flows was validated against published data of a high angle of attack pitching airfoil. Two-dimensional analyses were performed to assess both blade shape and operating conditions. The blade shape performance was parameterized on both blade camber and trailing edge thickness. The blades shapes were found to produce nearly the same power generation at the peak efficiency tip speed ratio (TSR), however off-design conditions were found to exhibit a strong dependency on blade shape. Turbine blades with the camber pointing outward radially were found to perform best over the widest range of TSR’s. In addition, a thickened blade trailing edge was found to be superior at the highest TSR’s with little performance degradation at low TSR’s. Three-dimensional moving mesh analyses were performed on the rotating portion of the full TidGen™ geometry and on a turbine blade stack-up. Partitioning the 3D blades axially showed that no sections reached the idealized 2D performance. The 3D efficiency dropped by approximately 12 percentage points at the peak efficiency TSR. A blade stack-up analysis was performed on the complex 3D/barreled/twisted turbine blade. The analysis first assessed the infinite length blade performance, next end effects were introduced by extruding the 2D foil to the nominal 5.6m length, next barreling was added to the straight foils, and finally twist was added to the foils to reproduce the TidGen™ geometry. The study showed that making the blades a finite length had a large negative impact on the performance, whereas barreling and twisting the foils had only minor impacts. Based on the 3D simulations the largest factor impacting performance in the 3D turbine was a reduction in mass flow through the turbine due to the streamlines being forces outward in the horizontal plane due to the turbine flow resistance. Strategies to mitigate these 3D losses were investigated, including adding flow deflectors on the turbine support structure and stacking multiple turbines in-line.


2014 ◽  
Vol 577 ◽  
pp. 214-217
Author(s):  
Yu Guang Li ◽  
Guo Qing Zhang

Based on WN gear characteristics and considering system error, a multi-degree-freedom (Tangential-Radial-Axial) dynamics analysis model after coupling friction was established. In this article, we established the three-dimensional solid model by using PROE and then imported WN gear’ three-dimensional model into Ansys software through the data interface of Ansys software and PROE software and conducted a three-dimensional simulation anasys of the impact of dynamic contact. By applying load, the stress analysis of WN gear was conducted and the WN gear’s the effective stress clouds was gotten. Meanwhile, basing on ANSYS / LS-DYNA, it established the rigid-flexible body of gear dynamic contact model and analyzed the dynamic simulation anasys of WN gear. The results demonstrated that the tangential and axial vibration of double arc gear was significantly greater than the radial vibration.


Sign in / Sign up

Export Citation Format

Share Document