Influence of blade leaning on hydraulic excitation and structural response of a reversible pump turbine

Author(s):  
Jinhui Ouyang ◽  
Yongyao Luo ◽  
Ran Tao

Blade leaning is commonly seen in the runner design of reversible pump turbines which operate under varying conditions. However, there is no certain law in determine the leaning mode and level. Considering performance, hydraulic excitation and structural response, five runners with strong rotational (RL+), rotational (RL), strong counter-rotational (CL+), counter-rotational (CL) and without (NL) blade leaning are compared under high-efficiency condition in pump mode and turbine mode. The head, efficiency, internal flow pressure pulsation and runner stress are comparatively studied. Among the five runners, CL+ runner is found has the highest efficiency as pump when RL+ runner has the highest efficiency as turbine. Pressure pulsation results show that the rotor-stator interaction region is the strongest pulsation source especially for runner and blade frequencies. In pump mode, pressure pulsation intensity decreases when blade leaning mode gradually changes from rotational to counter-rotational. In turbine mode, the NL runner has the strongest pressure pulsation intensity in runner and guide vane. Both rotational and counter-rotational leaning will reduce pressure pulsation. Velocity contours indicate that blade leaning will affect the velocity uniformity especially along rotational direction and cause stronger or weaker local hydraulic excitation. Under hydraulic excitation, RL+ runner suffers the highest equivalent stress as pump while CL runner suffers the highest equivalent stress as turbine. From rotational to counter-rotational blade leaning, the maximum stress moves on the crown from low pressure side to high pressure side. Considering hydraulic excitation and structural response, the strong counter-rotational leaning blade is found better in reversible runner design.

Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 949 ◽  
Author(s):  
Yan Jin ◽  
Xiaoke He ◽  
Ye Zhang ◽  
Shanshan Zhou ◽  
Hongcheng Chen ◽  
...  

This paper presents an investigation of external flow characteristics and pressure fluctuation of a submersible tubular pumping system by using a combination of numerical simulation and experimental methods. The steady numerical simulation is used to predicted the hydraulic performance of the pumping system, and the unsteady calculation is adopted to simulate the pressure fluctuation in different components of a submersible tubular pumping system. A test bench for a model test and pressure pulsation measurement is built to validate the numerical simulation. The results show that the performance curves of the calculation and experiment are in agreement with each other, especially in the high efficiency area, and the deviation is minor under small discharge and large discharge conditions. The pressure pulsation distributions of different flow components, such as the impeller outlet, middle of the guide vane, and guide vane outlet and bulb unit, are basically the same as the measurement data. For the monitoring points on the impeller and the wall of the guide vane especially, the main frequency and its amplitude matching degree are higher, while the pressure pulsation values on the wall of the bulb unit are quite different. The blade passing frequency and its multiples are important parameters for analysis of pressure pulsation; the strongest pressure fluctuation intensity appears in the impeller outlet, which is mainly caused by the rotor–stator interaction. The farther the measuring point from the impeller, the less the pressure pulsation is affected by the blade frequency. The frequency amplitudes decrease from the impeller exit to the bulb unit.


2021 ◽  
Vol 9 (12) ◽  
pp. 1360
Author(s):  
Wei Wang ◽  
Xi Wang ◽  
Zhengwei Wang ◽  
Mabing Ni ◽  
Chunan Yang

The instability of the no-load working condition of the pump turbine directly affects the grid connection of the unit, and will cause vibration and damage to the components of the unit in severe cases. In this paper, a three-dimensional full flow numerical model including the runner gap and the pressure-balance pipe was established. The method SST k-ω model was used to predict the internal flow characteristics of the pump turbine. The pressure pulsation of the runner under different operating conditions during the no-load process was compared. Because the rotation speed, flow rate, and guide vane opening of the unit change in a small range during the no-load process, the pressure pulsation characteristics of the runner are basically the same. Therefore, a working condition was selected to analyze the transient characteristics of the flow field, and it was found that there was a high-speed ring in the vaneless zone, and a stable channel vortex was generated in the runner flow passage. Analyzing the axial water thrust of each part of the runner, it was found that the axial water thrust of the runner gap was much larger than the axial water thrust of the runner blades, and it changed with time periodically. It was affected by rotor stator interaction. The main frequency was expressed as a multiple of the number of guide vanes, that is, vanes passing frequency, 22fn. During the entire no-load process, the axial water thrust of the runner changed slowly with time and fluctuated slightly.


Author(s):  
Chao Liu ◽  
Hongxun Chen ◽  
Zheng Ma

Waterjet propulsion has many advantages when operating at high-speed conditions. As a special way of navigation, it is mostly used in high-speed ships and shallow draft ships. In this paper, a mixed-flow waterjet pump was taken as the research object. For the two cases of non-uniform inflow and uniform inflow, a modified RANS/LES method was adopted for unsteady calculation of the whole channel, aiming at investigating the influence mechanism of the non-uniform inflow on the energy performance and pressure pulsation characteristics of the waterjet pump. The hydrodynamic characteristics of the waterjet pump were comprehensively analyzed such as head, efficiency, axial-force, internal flow and pressure pulsation. It is found that the non-uniform inflow will reduce the external characteristics of the waterjet pump and lead to the huge fluctuation of energy performance with time. Low-speed swirls occur locally in the intake duct for non-uniform inflow, in which condition the vorticity is much higher than that for uniform inflow. In terms of the low-speed area, [Formula: see text] and [Formula: see text], the values under non-uniform inflow condition are generally larger than those under uniform flow condition when in the impeller and guide vane zone. The dominant frequencies of pressure pulsation are, respectively, [Formula: see text], 7[Formula: see text] and 4[Formula: see text] in the intake duct, impeller and diffuser, which are almost consitent for the two cases. However, the frequency features are more diverse, and the amplitudes corresponding to the same frequencies are more intense for non-uniform inflow.


Author(s):  
Chengshuo Wu ◽  
Wenqi Zhang ◽  
Peng Wu ◽  
Jiale Yi ◽  
Haojie Ye ◽  
...  

Abstract In this paper, the effects of modifying the blade pressure side on unsteady pressure pulsation and flow structures in a low specific speed centrifugal pump are carried out by experimental and CFD. Seven monitor points are arranged in the circumferential direction of the impeller outlet to capture the pressure signals in the volute at the flow rate of 0.2-1.6Qd. Results show that blade PS modification introduced here can significantly alleviate the amplitude of pressure pulsation at blade passing frequency in all concerned operation conditions. The volute domain is replaced by an even outlet region for CFD analysis to study the effects on internal flow field. The SST turbulence model is adopted for steady-state simulation while the DDES based on the SST approach is adopted for transient simulation. Results show that local velocity fluctuation is the dominant reason for pressure pulsation in the volute. After PS modification, the relative velocity distribution at impeller outlet is more uniform and the intensity of shedding vortex at the blade trailing edge decreases significantly. The change of internal flow structure improves the uniformity of circumferential velocity distribution at downstream of impeller outlet, which leads to the decrease of pressure fluctuation amplitude in the volute. Meanwhile, the Local Euler Head distribution and the blade loading of PS are presented and compared. Results show that the reduction of pressure pulsation attributes to the more uniform energy distribution at impeller outlet which is achieved by actively unloading the PS of the modified blades.


1990 ◽  
Vol 112 (3) ◽  
pp. 512-520 ◽  
Author(s):  
T. Arts ◽  
A. E. Bourguignon

The purpose of this paper is to quantify the influence on external convective heat transfer of a coolant film whose position varies along the pressure side of a high-pressure turbine nozzle guide vane. The measurements were performed in the short-duration Isentropic Light Piston Compression Tube facility of the von Karman Institute. The effects of external and internal flow are considered in terms of Mach number, Reynolds number, free-stream turbulence intensity, blowing rate, and coolant to free-stream temperature ratio. The way to evaluate these results in terms of film cooling efficiency and heat transfer coefficient is finally discussed.


Author(s):  
Xianfang Wu ◽  
Heyu Ye ◽  
Minggao Tan ◽  
Houlin Liu

Abstract To study the internal flow characteristics of the photovoltaic pump under the transient change of the solar radiation, the simulation algorithm of the photovoltaic pump system was established by MATLAB/Simulink and CFD for the first time and the results were validated by the test. Firstly, the change rule of pump flow rate and rotation speed under transient solar radiation was obtained by Simulink. Then the results of the change rule were transformed into the boundary condition of CFD by CEL function and the transient flow field in the photovoltaic pump was obtained. The internal flow characteristics and pressure pulsation in the pump were analyzed when the solar radiation increases or decreases transiently. The results demonstrate that the numerical calculation can provide accurate prediction for the characteristics of internal flow in the pump. The numerical results are closed to experimental results, the minimum error of pressure is 0.93% and the maximum error is 1.78%. When the solar radiation increases transiently, the low pressure area at the impeller inlet gets larger obviously and the jet-wake at the impeller outlet becomes more obvious. The pressure pulsation in impeller gradually increases and becomes stable after 0.6 s. The pressure from the impeller outlet to guide vane outlet is stable at 123 kPa. When the solar radiation decreases transiently, the pressure in the impeller takes 1.6 s to be stable. Larger pressure pulsation occurs from the impeller outlet to the guide vane inlet and the maximum differential pressure is 10 kPa. Compared with the transient increase of solar radiation, the pressure in the impeller takes more 0.2 s to stabilize when the solar radiation transient decreases. Meanwhile, the results in this paper can provide references for other transient characteristics research.


Author(s):  
T. Arts ◽  
A. E. Bourguignon

The purpose of this paper is to quantify the influence on external convective heat transfer of a coolant film whose position varies along the pressure side of a high pressure turbine nozzle guide vane. The measurements were performed in the short duration Isentropic Light Piston Compression Tube facility of the von Karman Institute. The effects of external and internal flow are considered in terms of Mach number, Reynolds number, freestream turbulence intensity, blowing rate and coolant to freestream temperature ratio. The way to evaluate these results in terms of film cooling efficiency and heat transfer coefficient is finally discussed.


Author(s):  
Renfang Huang ◽  
Xianwu Luo ◽  
Bin Ji ◽  
Yuan Zheng

Guide vanes are important components for a shaft-extension tubular pump turbine. To study the influence of guide vanes on the performance of a shaft-extension tubular pump turbine, three guide vanes with different section profiles are prepared. The steady flows through the whole passage of the shaft-extension tubular pump turbine with different guide vanes are simulated based on RNG k-ε turbulence model. The numerical results show that the section profile of a guide vane influences the hydraulic performance of the pump turbine. It is noted that the pump turbine with the guide vane profile having a large curvature has a broader operation range with high efficiency, and the minimal hydraulic loss among three guide vanes. Further investigation depicts that the static pressure and velocity distribution in the guide vane are relatively uniform, and there are hardly flow incidence at the leading edge and little low pressure zone near the suction side for the suitable guide vane profile.


Author(s):  
Lanjin Zhang ◽  
Xingying Jing ◽  
Zhengwei Wang ◽  
Jinshi Chang ◽  
Guangjie Peng

Pump-turbine works in pump and turbine modes, and its hydraulic performance in pump mode is more important than that in turbine mode. The cavitation is an important factor influencing hydraulic performance in pump, especially when designing the runner. The paper studies pump cavitation flow of model pump-turbine runner and its cavitation performance. That can be a method to help design and chose pump-turbine runner. The hydraulic performance and cavitation is analyzed in different net positive suction head (NPSH) and discharge. The result shows that NPSH simulated by cavitation flow is better than that simulated by no cavitation flow. The simulation result also shows that cavitation places near the band of pump blade inlet on suction side when the pump discharge is small, and cavitation sites near the band of pump blade inlet on pressure side when the discharge is large. The hydraulic performance of pump runner will not change until water vapor accounts for about 42 percent of total volume.


2004 ◽  
Vol 10 (5) ◽  
pp. 345-354 ◽  
Author(s):  
Jan Dittmar ◽  
Achmed Schulz ◽  
Sigmar Wittig

The demand of improved thermal efficiency and high power output of modern gas turbine engines leads to extremely high turbine inlet temperature and pressure ratios. Sophisticated cooling schemes including film cooling are widely used to protect the vanes and blades of the first stages from failure and to achieve high component lifetimes. In film cooling applications, injection from discrete holes is commonly used to generate a coolant film on the blade's surface.In the present experimental study, the film cooling performance in terms of the adiabatic film cooling effectiveness and the heat transfer coefficient of two different injection configurations are investigated. Measurements have been made using a single row of fanshaped holes and a double row of cylindrical holes in staggered arrangement. A scaled test model was designed in order to simulate a realistic distribution of Reynolds number and acceleration parameter along the pressure side surface of an actual turbine guide vane. An infrared thermography measurement system is used to determine highly resolved distribution of the models surface temperature. Anin-situcalibration procedure is applied using single embedded thermocouples inside the measuring plate in order to acquire accurate local temperature data.All holes are inclined 35° with respect to the model's surface and are oriented in a streamwise direction with no compound angle applied. During the measurements, the influence of blowing ratio and mainstream turbulence level on the adiabatic film cooling effectiveness and heat transfer coefficient is investigated for both of the injection configurations.


Sign in / Sign up

Export Citation Format

Share Document