Rotating tip clearance asymmetry and role of endwall injection in stability desensitization of a transonic fan

Author(s):  
Hossein Khaleghi

The current study is aimed at understanding the effect of rotating tip clearance asymmetry on the operability and performance of a transonic compressor. Another objective of this investigation is to determine the influence of tip injection on reducing the detrimental effects of clearance asymmetry. Three dimensional unsteady Reynolds-averaged Navier–stokes simulations have been performed from choke to stall for different arrangements of non-uniform blade heights in a transonic fan. Furthermore, numerical computations have been conducted with endwall injection of air. The numerical results have been validated against experimental data. Results show that having the same mean tip clearance, the asymmetric compressor is less stable than the axisymmetric configuration. However, the peak pressure rise is found to be almost linearly correlated to the mean tip clearance for both the axisymmetric and asymmetric compressors. It is found that tip injection can desensitize the compressor to the tip clearance asymmetry. Results further reveal that tip clearance asymmetry does not change the compressor path to instability. However, endwall injection is found to be able to change the compressor stalling mode. Investigations concerning rotating non-uniformity (caused by non-uniform blade heights) are very few in open literature. The obtained results can assist in predicting the effect of rotating tip clearance asymmetry on the stability and performance of high-speed compressor rotors. Furthermore, the results uncover how tip injection can desensitize the compressor stability and affect its path into instability, which is one of the most important questions in the turbomachinery world.

Author(s):  
Hossein Khaleghi ◽  
Reza Jalaly

Half-annulus unsteady numerical simulations have been conducted with a 60-deg total pressure circumferential distortion in a transonic axial-flow fan. The effects of inlet distortion on the performance, stability and flow field of the test case are investigated and analyzed. Results show that the incidence angles are reduced when the blades are entering into the distorted region. Conversely, distortion increases the incidence angles onto the blades when they are leaving the distorted section. Results further reveal that the time-averaged flow field at the tip of the blade is similar with and without distortion. However, the distortion applied is found to have detrimental effects on both the stability and performance. The impacts of both annular and discrete tip injection on the endwall flow field are further studied in the current work. It is shown that endwall injection reduces the incidence angles onto the blades. Consequently, the passage shock and the leakage flow are pushed rearward, which postpones stall initiation.


1991 ◽  
Vol 113 (2) ◽  
pp. 241-250 ◽  
Author(s):  
C. Hah ◽  
A. J. Wennerstrom

The concept of swept blades for a transonic or supersonic compressor was reconsidered by Wennerstrom in the early 1980s. Several transonic rotors designed with swept blades have shown very good aerodynamic efficiency. The improved performance of the rotor is believed to be due to reduced shock strength near the shroud and better distribution of secondary flows. A three-dimensional flowfield inside a transonic rotor with swept blades is analyzed in detail experimentally and numerically. A Reynolds-averaged Navier–Stokes equation is solved for the flow inside the rotor. The numerical solution is based on a high-order upwinding relaxation scheme, and a two-equation turbulence model with a low Reynolds number modification is used for the turbulence modeling. To predict flows near the shroud properly, the tip-clearance flow also must be properly calculated. The numerical results at three different operating conditions agree well with the available experimental data and reveal various interesting aspects of shock structure inside the rotor.


Author(s):  
C. Hah ◽  
A. J. Wennerstrom

The concept of swept blades for a transonic or supersonic compressor was reconsidered by Wennerstrom in the early 1980s. Several transonic rotors designed with swept blades have shown very good aerodynamic efficiency. The improved performance of the rotor is believed to be due to reduced shock strength near the shroud and better distribution of secondary flows. A three-dimensional flowfield inside a transonic rotor with swept blades is analyzed in detail experimentally and numerically. A Reynolds-averaged Navier-Stokes equation is solved for the flow inside the rotor. The numerical solution is based on a high-order upwinding relaxation scheme, and a two-equation turbulence model with a low Reynolds number modification is used for the turbulence modeling. To properly predict flows near the shroud, the tip-clearance flow also must be properly calculated. The numerical results at three different operating conditions agree well with the available experimental data and reveal various interesting aspects of shock structure inside the rotor.


Author(s):  
M. B. Graf ◽  
E. M. Greitzer ◽  
F. E. Marble ◽  
O. P. Sharma

Effects of stator pressure field on upstream rotor performance in a high pressure compressor stage have been assessed using three-dimensional steady and time-accurate Reynolds-averaged Navier-Stokes computations. Emphasis was placed on: (1) determining the dominant features of the flow arising from interaction of the rotor with the stator pressure field, and (2) quantifying the overall effects on time averaged loss, blockage, and pressure rise. The time averaged results showed a 20 to 40% increase in overall rotor loss and a 10 to 50% decrease in tip clearance loss compared to an isolated rotor. The differences were dependent on the operating point and increased as the stage pressure rise, and amplitude of the unsteady back pressure variations, was increased. Motions of the tip leakage vortex on the order of the blade pitch were observed at the rotor exit in all the unsteady flow simulations; these were associated with enhanced mixing in the region. The period of the motion scaled with rotor flow-through time rather than stator passing. Three steady flow approximations for the rotor-stator interaction were assessed with reference to the unsteady computations: an axisymmetric representation of the stator pressure field, an inter-blade row averaging plane method, and a technique incorporating deterministic stresses and bodyforces associated with stator flow field. Differences between steady and unsteady predictions of overall rotor loss, tip region loss, and endwall blockage ranged from 5 to 50% of the time average, but the steady flow models gave overall rotor pressure rise and flow capacity within 5% of the time averaged values.


Author(s):  
Wei Wang ◽  
Wuli Chu ◽  
Haoguang Zhang ◽  
Yanhui Wu

Discrete tip injection upstream of the rotor tip is an effective technique to extend stability margin for a compressor system in an aeroengine. The current study investigates the effects of injectors’ circumferential coverage on compressor performance and stability using time-accurate three-dimensional numerical simulations for multi passages in a transonic compressor. The percentage of circumferential coverage for all the six injectors ranges from 6% to 87% for the five investigated configurations. Results indicate that circumferential coverage of tip injection can greatly affect compressor stability and total pressure ratio, but has little influence on adiabatic efficiency. The improvement of compressor total pressure ratio is linearly related with the increasing circumferential coverage. The unsteady flow fields show that there exists a non-ignorable time lag of the injection effects between the passage inlet and outlet, and blade tip loading will not decline until the injected flow reaches the passage outlet. Stability improves sharply with the increasing circumferential coverage when the coverage is less than 27%, but increases flatly for the rest. It is proven that the injection efficiency which is a measurement of averaged blockage decrement in the injected region is an effective guideline to predict the stability improvement.


2000 ◽  
Vol 123 (1) ◽  
pp. 40-48 ◽  
Author(s):  
V. Gu¨mmer ◽  
U. Wenger ◽  
H.-P. Kau,

The paper describes an advanced three-dimensional blading concept for highly loaded transonic compressor stators. The concept takes advantage of the aerodynamic effects of sweep and dihedral. To the knowledge of the authors this is the first approach reported in the open literature that combines those two basic types of lean in an engine-worthy aerofoil design. The paper makes a contribution to the understanding of the endwall effect of both features with special emphasis put on sweep. The advanced three-dimensional blading concept was applied to an Engine Section Stator (ESS) of an aero-engine fan. In order to demonstrate how three-dimensional flow can be controlled, numerical analysis of the flow structure in a conventional and an advanced stator configuration was performed using a three-dimensional Navier–Stokes solver. The numerical analysis showed the advanced blade improving both radial loading distribution and the three-dimensional endwall boundary layer development. In particular, a strong hub corner stall could be largely alleviated. High-speed rig testing of the advanced ESS confirmed the concept and showed good qualitative agreement between measurement and prediction. The work presented was closely linked to the development of the BR710 engine on which the advanced ESS is in service today.


1987 ◽  
Vol 109 (1) ◽  
pp. 83-90 ◽  
Author(s):  
W. N. Dawes

The numerical analysis of highly loaded transonic compressors continues to be of considerable interest. Although much progress has been made with inviscid analyses, viscous effects can be very significant, especially those associated with shock–boundary layer interactions. While inviscid analyses have been enhanced by the interactive inclusion of blade surf ace boundary layer calculations, it may be better in the long term to develop efficient algorithms to solve the full three-dimensional Navier–Stokes equations. Indeed, it seems that many phenomena of key interest, like tip clearance flows, may only be accessible to a Navier–Stokes solver. The present paper describes a computer program developed for solving the three-dimensional viscous compressible flow equations in turbomachine geometries. The code is applied to the study of the flowfield in an axial-flow transonic compressor rotor with an attempt to resolve the tip clearance flow. The predicted flow is compared with laser anemometry measurements and good agreement is found.


Author(s):  
B. H. Beheshti ◽  
B Farhanieh ◽  
K Ghorbanian ◽  
J. A. Teixeira ◽  
P. C. Ivey

The casing treatment and flow injection upstream of the rotor tip are two effective approaches in suppressing instabilities or recovering from a fully developed stall. This paper presents numerical simulations for a high-speed transonic compressor rotor, NASA Rotor 37, applying a state-of-the-art design for the blade tip injection. This is characterized by introducing a jet flow directly into the casing treatment machined into the shroud. The casing treatment is positioned over the blade tip region and exceeds the impeller axially by ∼30 per cent of the tip chord both in the upstream and in the downstream directions. To numerically solve the governing equations, the three-dimensional finite element based finite volume method CFD solver CFX-TASCflow (version 2.12.1) is employed. For a compressible flow with varying density, Reynolds-averaging leads to appearance of complicated correlations. To avoid this, the mass-weighted or Favre-averaging is applied. Using an injected mass flow of 2.4 per cent of the annulus flow, the present design can improve stall margin by up to 7 per cent when compared with a smooth casing compressor without tip injection. This research can lead to an optimum design of recirculating casing treatments or other mechanisms for performance enhancement applying tip flow injection.


Author(s):  
Anurag Gupta ◽  
S. Arif Khalid ◽  
G. Scott McNulty ◽  
Lyle Dailey

Rotor tip modeling fidelity, grid resolution, and near wall modeling have been examined to determine the requirements for an accurate prediction of the effects of large tip clearance in a low-speed axial compressor rotor. The effort, using a Reynolds-Averaged Navier-Stokes (RANS) solver, aimed to obtain the most accurate predictions from a three-dimensional, steady, single blade row simulation. A recently tested, modern low speed rotor, was used as the test geometry; the measured pressure rise characteristic as well as detailed data near stall was used to evaluate the ability of different modeling strategies to capture the correct flow structure. The leakage flow was quantified to show that a wide range of tip blockage could be obtained for different simulations of the same geometry and conditions. The results show that using a square tip and gridding to fully resolve the real tip gap was better able to capture the effects of loading on the leakage flow than either of the approximate models studied. Sufficient clustering near the casing to capture the shear layers was also found to be critical. While wall integration provided the best results in simultaneously improving the prediction of pressure rise characteristics and flow range, higher fidelity wall modeling and a casing y+ of approximately 3 were found to provide similar benefits.


Author(s):  
Stephane Baralon ◽  
Lars-Erik Eriksson ◽  
Ulf Håll

Two three-dimensional Reynolds-averaged Navier-Stokes solutions of the Nasa 67 transonic compressor rotor with tip clearance, computed at near-peak efficiency and near-stall flow conditions, have been circumferentially averaged in order to evaluate the circumferential spatial fluctuation terms such as u′u′, u′v′, u′w′, etc. The three-dimensional distribution of these fluctuations is presented and physically interpreted for the two flow conditions. Then, the meridional distributions of the tangential average of each of these fluctuation terms, the so-called perturbation stresses, are described and interpreted for the two flow conditions. A meridional throughflow computation for which all stresses were included has been performed for the near-peak efficiency flow condition using a time-marching finite-volume solver. The calculation proved to be in good agreement with the tangentially averaged 3D solution. Moreover, the relative importance of the perturbation and viscous stresses has been investigated. The influence of the viscous stresses on the meridional flow was not found important whereas the perturbation stresses were identified as significant contributors to the blade passage losses and to the spanwise mixing phenomenon. Furthermore, the relative effects of each perturbation term on the meridional flow prediction have been investigated for the near-peak efficiency case. The u′w′~, v′w′~, u′v′~ and u′u′~ stresses proved to exert a significant influence on the prediction of blade design key parameters such as flow angles and losses in the tip region, essentially.


Sign in / Sign up

Export Citation Format

Share Document