Prediction of Low Speed Compressor Rotor Flowfields With Large Tip Clearances

Author(s):  
Anurag Gupta ◽  
S. Arif Khalid ◽  
G. Scott McNulty ◽  
Lyle Dailey

Rotor tip modeling fidelity, grid resolution, and near wall modeling have been examined to determine the requirements for an accurate prediction of the effects of large tip clearance in a low-speed axial compressor rotor. The effort, using a Reynolds-Averaged Navier-Stokes (RANS) solver, aimed to obtain the most accurate predictions from a three-dimensional, steady, single blade row simulation. A recently tested, modern low speed rotor, was used as the test geometry; the measured pressure rise characteristic as well as detailed data near stall was used to evaluate the ability of different modeling strategies to capture the correct flow structure. The leakage flow was quantified to show that a wide range of tip blockage could be obtained for different simulations of the same geometry and conditions. The results show that using a square tip and gridding to fully resolve the real tip gap was better able to capture the effects of loading on the leakage flow than either of the approximate models studied. Sufficient clustering near the casing to capture the shear layers was also found to be critical. While wall integration provided the best results in simultaneously improving the prediction of pressure rise characteristics and flow range, higher fidelity wall modeling and a casing y+ of approximately 3 were found to provide similar benefits.

2017 ◽  
Vol 61 (4) ◽  
pp. 288
Author(s):  
Marhamat Zeinali ◽  
Sarallah Abbasi ◽  
Abolfazl Hajizadeh Aghdam

Commencement and development processes of unsteadiness, caused by blade row tip leakage flow in a low speed axial compressor, are investigated and results are presented in this paper. Analyses are based on results obtained through numerical simulation of unsteady three dimensional viscous flows. Discretization of the Navier-Stokes’s equations has been carried out based on upwind second-order scheme and k-ω-SST turbulence modeling was used for estimation of eddy viscosity.Three different circumstances, including design point and two near stall conditions are considered for investigation and discussion. Tip leakage flow frequency spectrums were examined through surveying instantaneous static pressure signals imposed on the blades surfaces. Focusing on time dependent flow structure results signified existence of some pressure peaks at near stall conditions. These regions, which are created as a result of interaction between main inflow and tip leakage flow, lead to occurrence of self-induced unsteadiness. However, at design condition, flow is more affected by the main inflow instead of the tip leakage flow. By occurrence of self-induced unsteadiness, which occurs at near stall condition, tip leakage vortex flow starts to fluctuate at a frequency about the blade passing frequency. Further decrease in the flow rate up to a specified value showed no significant variations in the leakage flow frequency, but, on the other hand, magnified amplitudes of this unsteadiness.


Author(s):  
Xiangyang Deng ◽  
Hongwu Zhang ◽  
Jingyi Chen ◽  
Weiguang Huang

In the course of advancing the understanding of the unsteady flow nature of compressor tip clearance flows, the present paper investigates the unsteady tip clearance flow in the second rotor of a two-stage low-speed axial compressor and its interaction with upstream and downstream stators. Numerical methods were adopted in the present study and the research focused on clarifying the unsteadiness of tip clearance flow behavior and its link to the change of rotor performance, subjected to the variables of axial gap sizes between the rotor and upstream and downstream stators. The result shows how and why the tip leakage vortex trajectory changes its shape with the change of gap size, and its impact on the rotor pressure rise characteristic. Within all the computed operating range, the pressure rise increases monotonically with the decrease of upstream axial gaps, but no monotonic variation was observed with the change of downstream axial gaps. This trend of performance change could be explained by the unsteady effect of upstream stator wakes, and the overall result is that the rotor performance was found to be more influenced by the upstream interaction than the downstream interaction. The frequency characteristic of the tip clearance vortex, under the influence of gap size and compressor operating condition, was also analyzed to provide a quantified estimation of its periodic flow behavior and a comparison with the recent results of other researchers.


1993 ◽  
Vol 115 (2) ◽  
pp. 283-295 ◽  
Author(s):  
W. N. Dawes

This paper describes recent developments to a three-dimensional, unstructured mesh, solution-adaptive Navier–Stokes solver. By adopting a simple, pragmatic but systematic approach to mesh generation, the range of simulations that can be attempted is extended toward arbitrary geometries. The combined benefits of the approach result in a powerful analytical ability. Solutions for a wide range of flows are presented, including a transonic compressor rotor, a centrifugal impeller, a steam turbine nozzle guide vane with casing extraction belt, the internal coolant passage of a radial inflow turbine, and a turbine disk cavity flow.


Author(s):  
N. Lymberopoulos ◽  
K. Giannakoglou ◽  
I. Nikolaou ◽  
K. D. Papailiou ◽  
A. Tourlidakis ◽  
...  

Mechanical constraints dictate the existence of tip clearances in rotating cascades, resulting to a flow leakage through this clearance which considerably influences the efficiency and range of operation of the machine. Three-dimensional Navier-Stokes solvers are often used for the numerical study of compressor and turbine stages with tip-clearance. The quality of numerical predictions depends strongly on how accurately the blade tip region is modelled; in this respect the accurate modelling of tip region was one of the main goals of this work. In the present paper, a 3-D Navier-Stokes solver is suitably adapted so that the flat tip surface of a blade and its sharp edges could be accurately modelled, in order to improve the precision of the calculation in the tip region. The adapted code solves the fully elliptic, steady, Navier-Stokes equations through a space-marching algorithm and a pressure correction technique; the H-type topology is retained, even in cases with thick leading edges where a special treatment is introduced herein. The analysis is applied to two different cases, a linear cascade and a compressor rotor, and comparisons with experimental data are provided.


1986 ◽  
Author(s):  
B. Lakshminarayana ◽  
P. Popovski

A comprehensive study of the three-dimensional turbulent boundary layer on a compressor rotor blade at peak pressure rise coefficient is reported in this paper. The measurements were carried out at various chordwise and radial locations on a compressor rotor blade using a rotating miniature “V” configuration hot-wire probe. The data are compared with the measurement at the design condition. Substantial changes in the blade boundary layer characteristics are observed, especially in the outer sixteen percent of the blade span. The increased chordwise pressure gradient and the leakage flow at the peak pressure coefficient have a cumulative effect in increasing the boundary layer growth on the suction surface. The leakage flow has a beneficial effect on the pressure surface. The momentum and boundary layer thicknesses increase substantially from those at the design condition, especially near the outer radii of the suction surface.


Author(s):  
Wei Zhu ◽  
Songtao Wang ◽  
Longxin Zhang ◽  
Jun Ding ◽  
Zhongqi Wang

This study aimed to enhance the understanding of flow phenomena in low-reaction aspirated compressors. Three-dimensional, multi-passage steady and unsteady numerical simulations are performed to investigate the performance sensitivity to tip clearance variation on the first-stage rotor of a multistage low-reaction aspirated compressor. Three kinds of tip clearance sizes including 1.0τ, 2.0τ and 3.0τ are modeled, in which 1.0τ corresponds to the designed tip clearance size of 0.2 mm. The steady numerical simulations show that the overall performance of the rotor moves toward lower mass flow rate when the tip clearance size is increased. Moreover, energy losses, efficiency reduction and stall margin decrease are also observed with increasing tip clearance size. This can be mostly attributed to the damaging impact of intense tip clearance flow. For unsteady simulation, the result shows periodical oscillation of the tip leakage vortex and a “two-passage periodic structure” in the tip region at the near-stall point. The occurrence of the periodical oscillation is due to the severe interaction between the tip clearance flow and the shock wave. However, the rotor operating state is still stable at this working point because a dynamic balance is established between the tip clearance flow and incoming flow.


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


Author(s):  
W. R. Briley ◽  
D. V. Roscoe ◽  
H. J. Gibeling ◽  
R. C. Buggeln ◽  
J. S. Sabnis ◽  
...  

Three-dimensional solutions of the ensemble-averaged Navier-Stokes equations have been computed for a high-turning turbine rotor passage, both with and without tip clearance effects. The geometry is Pratt & Whitney’s preliminary design for the Generic Gas Generator Turbine (GGGT), having an axial chord of 0.5 inch and turning angle of about 160 degrees. The solutions match the design Reynolds number of 3x 106/inch and design inflow/outflow distributions of flow quantities. The grid contains 627,000 points, including 20 radial points in the clearance gap of 0.015 inch, and has a minimum spacing of 10−4 inch adjacent to all surfaces. The solutions account for relative motion of the blade and shroud surfaces and include a backstep on the shroud. Computed results are presented which show the general flow behavior, especially near the tip clearance and backstep regions. The results are generally consistent with experimental observations for other geometries having thinner blades and smaller turning angles. The leakage flow includes some fluid originally in the freestream at 91 percent span. Downstream, the leakage flow behaves as a wall jet directed at 100 degrees to the main stream, with total pressure and temperature higher than the freestream. Radial distributions of circumferentially-averaged flow quantities are compared for solutions with and without tip leakage flow. Two-dimensional solutions are also presented for the mid-span blade geometry for design and off-design inflow angles.


Author(s):  
Chengwu Yang ◽  
Ge Han ◽  
Shengfeng Zhao ◽  
Xingen Lu ◽  
Yanfeng Zhang ◽  
...  

Abstract The blades of rear stages in small size core compressors are reduced to shorter than 20 mm or even less due to overall high pressure ratio. The growing of tip clearance-to-blade height ratio of the rear stages enhance the leakage flow and increase the possibility of a strong clearance sensitivity, thus limiting the compressor efficiency and stability. A new concept of compressor, namely diffuser passage compressor (DP), for small size core compressors was introduced. The design aims at making the compressors robust to tip clearance leakage flow by reducing pressure difference between pressure and suction surfaces. To validate the concept, the second stage of a two-stage highly loaded axial compressor was designed with DP rotor according to a diffuser map. The diffuser passage stage has the same inlet condition and loading as the conventional compressor (CNV) stage, of which the work coefficient is around 0.37. The predicted performance and flow field of the DP were compared with the conventional axial compressor in detail. The rig testing was supplemented with the numerical predictions. Results reveal that the throttle characteristic of DP indicates higher pressure rise and the loss reduction in tip clearance is mainly responsible for the performance improvement. For the compressor with DP, the pressure and flow angle are more uniform on exit plane. What’s more, the rotor with diffused passage reveals more robust than the conventional rotor at double clearance gap. Furthermore, the experimental data indicate that DP presents higher pressure rise at design and part speeds. At design speed, the stall margin was extended by 7.25%. Moreover, peak adiabatic efficiency of DP is also higher than that of CNV by about 0.7%.


Author(s):  
Hongwei Ma ◽  
Jun Zhang

The purpose of this paper is to investigate numerically the effects of the tip geometry on the performance of an axial compressor rotor. There are three case studies which are compared with the base line tip geometry. 1) baseline (flat tip); 2) Cavity (tip with a cavity); 3) SSQA (suction side squealer tip) and 4) SSQB (modified suction side squealer tip). The case of SSQB is a combination of suction side squealer tip and the cavity tip. From leading edge to 10% chord, the tip has a cavity. From 10% chord to trailing edge, the tip has a suction side squealer. The numerical results of 2) show that the cavity tip leads to lower leakage mass flow and greater loss in tip gap and the rotor passage. The loading near the blade tip is lower than the baseline, thus the tangential force of the blade is lower. It leads to lower pressure rise than the baseline. The performance of the compressor for the tip with cavity is worse than the baseline. The results of 3) show that the higher curvature of the suction side squealer increases the loading of the blade and the tangential blade force. With the suction side squealer tip, the leakage flow experiences two vena contractor thus the mass of the leakage flow is reduced which is benefit for the performance of the compressor. The loss in the tip gap is lower than baseline. The performance is better than the baseline with greater pressure rise of the rotor, smaller leakage mass flow and lower averaged loss. For the case the SSQB, the leakage mass flow is lower than the SSQA and the loss in the tip gap and the rotor passage is greater than SSQA. The performance of the case of the SSQB is worse than the case of SSQA.


Sign in / Sign up

Export Citation Format

Share Document