Three-dimensional leader–follower formation control of multiple autonomous underwater vehicles based on line-of-sight measurements using the backstepping method

Author(s):  
Shikun Pang ◽  
Jian Wang ◽  
Jingyang Liu ◽  
Hong Yi

This article presents the three-dimensional leader–follower formation control strategy of multiple autonomous underwater vehicles on the basis of line-of-sight measurement. Sensors on autonomous underwater vehicles can measure line-of-sight range and bearing information, and autonomous underwater vehicles in formation do not require mutual exchange with one another, which could avoid the problem of data transmission delay. The proposed Lyapunov-based backstepping approach is developed for the formation controller. The backstepping controller propels the follower autonomous underwater vehicles to follow the desired virtual reference route provided according to the range and bearing information of the leader autonomous underwater vehicle and the predetermined formation. Simulation results indicate that follower autonomous underwater vehicles can travel along the desired route and successfully achieve the designed formation shape. The effectiveness of the employed method is validated.

2019 ◽  
Vol 16 (4) ◽  
pp. 172988141987066 ◽  
Author(s):  
Xiang Cao ◽  
Liqiang Guo

As one of the challenging tasks of multiple autonomous underwater vehicles systems, the realization of target hunting is the great significance. The multiple autonomous underwater vehicle target hunting is studied in this article. In some research, because the hunting members cannot reach the hunting point at the same time, the hunting time is long or the target escapes. To improve the efficiency of the target hunting, the leader–follower formation algorithm is introduced. Firstly, the task is assigned based on the distance between the autonomous underwater vehicle and the target. Then, the autonomous underwater vehicles with the same task are formed based on leader–follower mode, and the formation is kept to track the target. In the final capture phase, multiple autonomous underwater vehicle system use angle matching algorithm to round up target. The simulation results show that the proposed algorithm can effectively accomplish the target hunting task, save the hunting time, and avoid the target escape. Compared with the bioinspired neural network algorithm, the proposed algorithm shows better performance.


Author(s):  
Mohammad Saghafi ◽  
Roham Lavimi

In this research, the flow around the autonomous underwater vehicles with symmetrical bodies is numerically investigated. Increasing the drag force in autonomous underwater vehicles increases the energy consumption and decreases the duration of underwater exploration and operations. Therefore, the main objective of this research is to decrease drag force with the change in geometry to reduce energy consumption. In this study, the decreasing or increasing trends of the drag force of axisymmetric bare hulls have been studied by making alterations in the curve equations and creating the optimal geometric shapes in terms of hydrodynamics for the noses and tails of autonomous underwater vehicles. The incompressible, three-dimensional, and steady Navier–Stokes equations have been used to simulate the flow. Also, k-ε Realizable with enhanced wall treatment was used for turbulence modeling. Validation results were acceptable with respect to the 3.6% and 1.4% difference with numerical and experimental results. The results showed that all the autonomous underwater vehicle hulls designed in this study, at an attack angle of 0°, had a lower drag force than the autonomous underwater vehicle hull used for validation except geometry no. 1. In addition, nose no. 3 has been selected as the best nose according to the lowest value of stagnation pressure, and also tail no. 3 has been chosen as the best tail due to the production of the lowest vortex. Therefore, geometry no. 5 has been designed using nose and tail no. 3. The comparison made here showed that the maximum drag reduction in geometry no. 5 was equal to 26%, and therefore, it has been selected as the best bare hull in terms of hydrodynamics.


2013 ◽  
Vol 328 ◽  
pp. 128-132
Author(s):  
Yan Peng ◽  
Wei Qing Wu ◽  
Mei Liu ◽  
Shao Rong Xie ◽  
Jun Luo

The path planning relates to the safe movement and navigation of the Autonomous Underwater Vehicles (AUV). This paper discusses the way of real-time path planning for autonomous underwater vehicle based on tracking control lyapunov function. The simulation conducted on H300 illustrates the effectiveness of proposed method.


Robotica ◽  
2021 ◽  
pp. 1-27
Author(s):  
Taha Elmokadem ◽  
Andrey V. Savkin

Abstract Unmanned aerial vehicles (UAVs) have become essential tools for exploring, mapping and inspection of unknown three-dimensional (3D) tunnel-like environments which is a very challenging problem. A computationally light navigation algorithm is developed in this paper for quadrotor UAVs to autonomously guide the vehicle through such environments. It uses sensors observations to safely guide the UAV along the tunnel axis while avoiding collisions with its walls. The approach is evaluated using several computer simulations with realistic sensing models and practical implementation with a quadrotor UAV. The proposed method is also applicable to other UAV types and autonomous underwater vehicles.


2018 ◽  
Vol 212 (1) ◽  
pp. 105-123
Author(s):  
Tomasz Praczyk ◽  
Piotr Szymak ◽  
Krzysztof Naus ◽  
Leszek Pietrukaniec ◽  
Stanisław Hożyń

Abstract The paper presents the first part of the final report on all the experiments with biomimetic autono-mous underwater vehicle (BAUV) performed within the confines of the project entitled ‘Autonomous underwater vehicles with silent undulating propulsion for underwater ISR’, financed by Polish National Center of Research and Development. The report includes experiments in the swimming pool as well as in real conditions, that is, both in a lake and in the sea. The tests presented in this part of the final report were focused on low-level control.


2018 ◽  
Vol 213 (2) ◽  
pp. 53-67 ◽  
Author(s):  
Tomasz Praczyk ◽  
Piotr Szymak ◽  
Krzysztof Naus ◽  
Leszek Pietrukaniec ◽  
Stanisław Hożyń

Abstract The paper presents the second part of the final report on all the experiments with biomimetic autonomous underwater vehicle (BAUV) performed within the confines of the project entitled ‘Autonomous underwater vehicles with silent undulating propulsion for underwater ISR’, financed by Polish National Center of Research and Development. The report includes experiments on the swimming pool as well as in real conditions, that is, both in a lake and in the sea. The tests presented in this part of the final report were focused on navigation and autonomous operation.


Sign in / Sign up

Export Citation Format

Share Document