The reconstruction of burned area and fire severity using charcoal from boreal lake sediments

The Holocene ◽  
2020 ◽  
Vol 30 (10) ◽  
pp. 1400-1409 ◽  
Author(s):  
Andy Hennebelle ◽  
Julie C Aleman ◽  
Adam A Ali ◽  
Yves Bergeron ◽  
Christopher Carcaillet ◽  
...  

Although lacustrine sedimentary charcoal has long been used to infer paleofires, their quantitative reconstructions require improvements of the calibration of their links with fire regimes (i.e. occurrence, area, and severity) and the taphonomic processes that affect charcoal particles between the production and the deposition in lake sediments. Charcoal particles >150 µm were monitored yearly from 2011 to 2016 using traps submerged in seven head lakes situated in flat-to-rolling boreal forest landscapes in eastern Canada. The burned area was measured, and the above-ground fire severity was assessed using the differentiated normalized burn ratio (dNBR) index, derived from LANDSAT images, and measurements taken within zones radiating 3, 15, and 30 km from the lakes. In order to evaluate potential lag effects in the charcoal record, fire metrics were assessed for the year of recorded charcoal recording (lag 0) and up to 5 years before charcoal deposition (lag 5). A total of 92 variables were generated and sorted using a Random Forest-based methodology. The most explanatory variables for annual charcoal particle presence, expressed as the median surface area, were selected. Results show that, temporally, sedimentary charcoal accurately recorded fire events without a temporal lag; spatially, fires were recorded up to 30 km from the lakes. Selected variables highlighted the importance of burned area and fire severity in explaining lacustrine charcoal. The charcoal influx was thus driven by fire area and severity during the production process. The dispersion process of particles resulted mostly of wind transportation within the regional (<30 km) source area. Overall, charcoal median surface area represents a reliable proxy for reconstructing past burned areas and fire severities.

2021 ◽  
Author(s):  
Aritina Haliuc ◽  
Anne-Laure Daniau ◽  
Braise team members

&lt;p&gt;Fire is a worldwide terrestrial process and has shaped the ecosystems and life on Earth over millions of years. Today, fire regime metrics such as burned area, intensity and frequency, depend on a set of climatic and environmental variables, but under anticipated climate warming scenarios, it is projected that fire characteristics will change, posing great threats to the environment and society. Large uncertainties remain in better understanding this complex process, integrating it in Earth system global models and better forecasting the response of fire to future climate changes.&lt;/p&gt;&lt;p&gt;Paleofire records from marine sediments capture information about regional-scale relative changes in biomass burning over long timescale and can help understanding the relationships between climate change and fire activity. We still lack, though, what a change in biomass burning in the paleorecord means in terms of fire regimes.&lt;/p&gt;&lt;p&gt;The present study aims at exploring the link between charcoal accumulation in marine surface sediment samples of modern ages from about 150 sites across the African coast and fire regimes on land. It is based on an integrated approach using fire proxy, climate, environmental and historical information, and satellite data. Exploratory in character, this study is designed to investigate this link among different biomes, describing latitudinal and longitudinal transects, and to test the influence of different physical site-specific variables (climate, vegetation, size of the source area etc.) on land and transport-deposition processes into the marine realm.&lt;/p&gt;&lt;p&gt;This study aims to provide a novel sediment-based proxy for a key physical parameter unlocking specific technical and theoretical problems related to fire research; it may also help to better understand local to regional processes controlling the fire signal and contextualize current and past environmental changes.&lt;/p&gt;


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242484
Author(s):  
Bang Nguyen Tran ◽  
Mihai A. Tanase ◽  
Lauren T. Bennett ◽  
Cristina Aponte

Wildfires have increased in size and frequency in recent decades in many biomes, but have they also become more severe? This question remains under-examined despite fire severity being a critical aspect of fire regimes that indicates fire impacts on ecosystem attributes and associated post-fire recovery. We conducted a retrospective analysis of wildfires larger than 1000 ha in south-eastern Australia to examine the extent and spatial pattern of high-severity burned areas between 1987 and 2017. High-severity maps were generated from Landsat remote sensing imagery. Total and proportional high-severity burned area increased through time. The number of high-severity patches per year remained unchanged but variability in patch size increased, and patches became more aggregated and more irregular in shape. Our results confirm that wildfires in southern Australia have become more severe. This shift in fire regime may have critical consequences for ecosystem dynamics, as fire-adapted temperate forests are more likely to be burned at high severities relative to historical ranges, a trend that seems set to continue under projections of a hotter, drier climate in south-eastern Australia.


2021 ◽  
Vol 13 (1) ◽  
pp. 432
Author(s):  
Aru Han ◽  
Song Qing ◽  
Yongbin Bao ◽  
Li Na ◽  
Yuhai Bao ◽  
...  

An important component in improving the quality of forests is to study the interference intensity of forest fires, in order to describe the intensity of the forest fire and the vegetation recovery, and to improve the monitoring ability of the dynamic change of the forest. Using a forest fire event in Bilahe, Inner Monglia in 2017 as a case study, this study extracted the burned area based on the BAIS2 index of Sentinel-2 data for 2016–2018. The leaf area index (LAI) and fractional vegetation cover (FVC), which are more suitable for monitoring vegetation dynamic changes of a burned area, were calculated by comparing the biophysical and spectral indices. The results showed that patterns of change of LAI and FVC of various land cover types were similar post-fire. The LAI and FVC of forest and grassland were high during the pre-fire and post-fire years. During the fire year, from the fire month (May) through the next 4 months (September), the order of areas of different fire severity in terms of values of LAI and FVC was: low > moderate > high severity. During the post fire year, LAI and FVC increased rapidly in areas of different fire severity, and the ranking of areas of different fire severity in terms of values LAI and FVC was consistent with the trend observed during the pre-fire year. The results of this study can improve the understanding of the mechanisms involved in post-fire vegetation change. By using quantitative inversion, the health trajectory of the ecosystem can be rapidly determined, and therefore this method can play an irreplaceable role in the realization of sustainable development in the study area. Therefore, it is of great scientific significance to quantitatively retrieve vegetation variables by remote sensing.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3982
Author(s):  
Giacomo Lazzeri ◽  
William Frodella ◽  
Guglielmo Rossi ◽  
Sandro Moretti

Wildfires have affected global forests and the Mediterranean area with increasing recurrency and intensity in the last years, with climate change resulting in reduced precipitations and higher temperatures. To assess the impact of wildfires on the environment, burned area mapping has become progressively more relevant. Initially carried out via field sketches, the advent of satellite remote sensing opened new possibilities, reducing the cost uncertainty and safety of the previous techniques. In the present study an experimental methodology was adopted to test the potential of advanced remote sensing techniques such as multispectral Sentinel-2, PRISMA hyperspectral satellite, and UAV (unmanned aerial vehicle) remotely-sensed data for the multitemporal mapping of burned areas by soil–vegetation recovery analysis in two test sites in Portugal and Italy. In case study one, innovative multiplatform data classification was performed with the correlation between Sentinel-2 RBR (relativized burn ratio) fire severity classes and the scene hyperspectral signature, performed with a pixel-by-pixel comparison leading to a converging classification. In the adopted methodology, RBR burned area analysis and vegetation recovery was tested for accordance with biophysical vegetation parameters (LAI, fCover, and fAPAR). In case study two, a UAV-sensed NDVI index was adopted for high-resolution mapping data collection. At a large scale, the Sentinel-2 RBR index proved to be efficient for burned area analysis, from both fire severity and vegetation recovery phenomena perspectives. Despite the elapsed time between the event and the acquisition, PRISMA hyperspectral converging classification based on Sentinel-2 was able to detect and discriminate different spectral signatures corresponding to different fire severity classes. At a slope scale, the UAV platform proved to be an effective tool for mapping and characterizing the burned area, giving clear advantage with respect to filed GPS mapping. Results highlighted that UAV platforms, if equipped with a hyperspectral sensor and used in a synergistic approach with PRISMA, would create a useful tool for satellite acquired data scene classification, allowing for the acquisition of a ground truth.


2019 ◽  
Vol 16 (19) ◽  
pp. 3883-3910 ◽  
Author(s):  
Lina Teckentrup ◽  
Sandy P. Harrison ◽  
Stijn Hantson ◽  
Angelika Heil ◽  
Joe R. Melton ◽  
...  

Abstract. Understanding how fire regimes change over time is of major importance for understanding their future impact on the Earth system, including society. Large differences in simulated burned area between fire models show that there is substantial uncertainty associated with modelling global change impacts on fire regimes. We draw here on sensitivity simulations made by seven global dynamic vegetation models participating in the Fire Model Intercomparison Project (FireMIP) to understand how differences in models translate into differences in fire regime projections. The sensitivity experiments isolate the impact of the individual drivers on simulated burned area, which are prescribed in the simulations. Specifically these drivers are atmospheric CO2 concentration, population density, land-use change, lightning and climate. The seven models capture spatial patterns in burned area. However, they show considerable differences in the burned area trends since 1921. We analyse the trajectories of differences between the sensitivity and reference simulation to improve our understanding of what drives the global trends in burned area. Where it is possible, we link the inter-model differences to model assumptions. Overall, these analyses reveal that the largest uncertainties in simulating global historical burned area are related to the representation of anthropogenic ignitions and suppression and effects of land use on vegetation and fire. In line with previous studies this highlights the need to improve our understanding and model representation of the relationship between human activities and fire to improve our abilities to model fire within Earth system model applications. Only two models show a strong response to atmospheric CO2 concentration. The effects of changes in atmospheric CO2 concentration on fire are complex and quantitative information of how fuel loads and how flammability changes due to this factor is missing. The response to lightning on global scale is low. The response of burned area to climate is spatially heterogeneous and has a strong inter-annual variation. Climate is therefore likely more important than the other factors for short-term variations and extremes in burned area. This study provides a basis to understand the uncertainties in global fire modelling. Both improvements in process understanding and observational constraints reduce uncertainties in modelling burned area trends.


2016 ◽  
Vol 25 (11) ◽  
pp. 1117 ◽  
Author(s):  
Marie-Pierre Rogeau ◽  
Mike D. Flannigan ◽  
Brad C. Hawkes ◽  
Marc-André Parisien ◽  
Rick Arthur

Like many fire-adapted ecosystems, decades of fire exclusion policy in the Rocky Mountains and Foothills natural regions of southern Alberta, Canada are raising concern over the loss of ecological integrity. Departure from historical conditions is evaluated using median fire return intervals (MdFRI) based on fire history data from the Subalpine (SUB), Montane (MT) and Upper Foothills (UF) natural subregions. Fire severity, seasonality and cause are also documented. Pre-1948 MdFRI ranged between 65 and 85 years in SUB, between 26 and 35 years in MT and was 39 years in UF. The fire exclusion era resulted in a critical departure of 197–223% in MT (MdFRI = 84–104 years). The departure in UF was 170% (MdFRI = 104 years), while regions of continuous fuels in SUB were departed by 129% (MdFRI = 149 years). The most rugged region of SUB is within its historical range of variation with a departure of 42% (MdFRI = 121 years). More mixed-severity burning took place in MT and UF. SUB and MT are in a lightning shadow pointing to a predominance of anthropogenic burning. A summer fire season prevails in SUB, but occurs from spring to fall elsewhere. These findings will assist in developing fire and forest management policies and adaptive strategies in the future.


2021 ◽  
Author(s):  
Jie Zhao ◽  
Chao Yue ◽  
Philippe Ciais ◽  
Xin Hou ◽  
Qi Tian

&lt;p&gt;Wildfire is the most prevalent natural disturbance in the North American boreal (BNA) forest and can cause post-fire land surface temperature change (&amp;#916;LST&lt;sub&gt;fire&lt;/sub&gt;) through biophysical processes. Fire regimes, such as fire severity, fire intensity and percentage of burned area (PBA), might affect &amp;#916;LST&lt;sub&gt;fire&lt;/sub&gt; through their impacts on post-fire vegetation damage. However, the difference of the influence of different fire regimes on the &amp;#916;LST&lt;sub&gt;fire&lt;/sub&gt; has not been quantified in previous studies, despite ongoing and projected changes in fire regimes in BNA in association with climate change. Here we employed satellite observations and a space-and-time approach to investigate diurnal &amp;#916;LST&lt;sub&gt;fire&lt;/sub&gt; one year after fire across BNA. We further examined potential impacts of three fire regimes (i.e., fire intensity, fire severity and PBA) and latitude on &amp;#916;LST&lt;sub&gt;fire&lt;/sub&gt; by simple linear regression analysis and multiple linear regression analysis in a stepwise manner. Our results demonstrated pronounced asymmetry in diurnal &amp;#916;LST&lt;sub&gt;fire&lt;/sub&gt;, characterized by daytime warming in contrast to nighttime cooling over most BNA. Such diurnal &amp;#916;LST&lt;sub&gt;fire&lt;/sub&gt; also exhibits a clear latitudinal pattern, with stronger daytime warming and nighttime cooling one year after fire in lower latitudes, whereas in high latitudes fire effects are almost neutral. Among the fire regimes, fire severity accounted for the most (43.65%) of the variation of daytime &amp;#916;LST&lt;sub&gt;fire&lt;/sub&gt;, followed by PBA (11.6%) and fire intensity (8.5%). The latitude is an important factor affecting the influence of fire regimes on daytime &amp;#916;LST&lt;sub&gt;fire&lt;/sub&gt;. The sensitivity of fire intensity and PBA impact on daytime &amp;#916;LST&lt;sub&gt;fire&lt;/sub&gt; decreases with latitude. But only fire severity had a significant effect on nighttime &amp;#916;LST&lt;sub&gt;fire&lt;/sub&gt; among three fire regimes. Our results highlight important fire regime impacts on daytime &amp;#916;LST&lt;sub&gt;fire&lt;/sub&gt;, which might play a critical role in catalyzing future boreal climate change through positive feedbacks between fire regime and post-fire surface warming.&lt;/p&gt;


2017 ◽  
Author(s):  
Guido R. van der Werf ◽  
James T. Randerson ◽  
Louis Giglio ◽  
Thijs T. van Leeuwen ◽  
Yang Chen ◽  
...  

Abstract. Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long term fire records are needed that fuse information from different satellite and in-situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED) and quantify global fire emissions patterns during 1997–2015. The modeling system, based on the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include: 1) new burned area estimates with contributions from small fires, 2) a revised fuel consumption parameterization optimized using field observations, 3) modifications that improve the representation of fuel consumption in frequently burning landscapes, and 4) fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25°) and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were 2.2 x 1015 grams carbon per year (Pg C yr-1) during 1997–2015, with a maximum in 1997 (3.0 Pg C yr-1) and minimum in 2013 (1.8 Pg C yr-1). These estimates were 11 % higher than our previous estimates (GFED3) during 1997–2011, when the two datasets overlapped. This increase was the result of a substantial increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (–19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emission factors. If small fire burned area was excluded (GFED4 without the "s" for small fires), average emissions were 1.5 Pg C yr-1. The addition of small fires had the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia. Our improved dataset provides an internally consistent set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire dynamics and their impact on the Earth System. GFED data is available from http://www.globalfiredata.org.


2021 ◽  
Author(s):  
Damon B Lesmeister ◽  
Raymond J. Davis ◽  
Stan G. Sovern ◽  
Zhiqiang Yang

Abstract Background The northern spotted owl (Strix occidentalis caurina) is an Endangered Species Act-listed subspecies that requires forests with old-growth characteristics for nesting. With climate change, large, severe wildfires are expected to be more common and an increasing threat to spotted owl persistence. Understanding fire severity patterns related to nesting forest can be valuable for forest management that supports conservation and recovery, especially if nesting forest functions as fire refugia (i.e., lower fire severity than surrounding landscape). We examined the relationship between fire severity and nesting forests in 472 large wildfires (> 200 ha) that occurred rangewide during 1987–2017. We mapped fire severities (unburned-low, moderate, high) within each fire using relative difference normalized burn ratios and quantified differences in severity between pre-fire nesting forest (edge and interior) and non-nesting forest. We also quantified these relationships within areas of three fire regimes (low severity, very frequent; mixed severity, frequent; high severity, infrequent). Results Averaged over all fires, the interior nesting forest burned at lower severity than edge or non-nesting forest. These relationships were consistent within the low severity, very frequent and mixed severity, frequent fire regime areas. All forest types burned at similar severity within the high severity, infrequent fire regime. During two of the most active wildfire years that also had the largest wildfires occurring in rare and extreme weather conditions, we found a bimodal distribution of fire severity in all forest types. In those years, a higher amount—and proportion—of all forest types burned at high severity. Over the duration of the study, we found a strong positive trend in the proportion of wildfires that burned at high severity in the non-nesting forests, but not in the two nesting forest types. Conclusions Under most wildfire conditions, the microclimate of interior patches of nesting forests likely mitigated fire severity and thus functioned as fire refugia. With changing climates, the future of interior forest as fire refugia is unknown, but trends suggest these older forests can dampen the effect of increased wildfire activity and thus an important component of landscape plans focused on fire resiliency.


Sign in / Sign up

Export Citation Format

Share Document