Perinatal sulfamonomethoxine exposure influences physiological and behavioral responses and the brain mTOR pathway in mouse offspring

2016 ◽  
Vol 36 (3) ◽  
pp. 256-275 ◽  
Author(s):  
Q Zhang ◽  
D Zhang ◽  
Kai-yong Liu ◽  
Ye-hao Liu ◽  
J Sheng ◽  
...  

Sulfamonomethoxine (SMM) is widely used in the veterinary field in China. Although some clinical surveys have revealed that sulfonamide antibiotics cause adverse nervous system symptoms, the related mechanisms of maternal SMM exposure on the neurobehavioral development of offspring remain unclear. Here, we investigated the effects of perinatal SMM exposure on the physiological and behavioral responses of pubertal offspring mice and the underlying mechanisms. We randomly allocated pregnant mice into the groups treated with SMM at different doses and the saline-treated groups. Maternal mice were orally administered SMM daily from gestational day 1 to postpartum day 21. On postnatal day (PND) 22, the parameters of growth, endocrine hormones, and brain amino acid composition were assessed, as well as the brain transcript levels of key genes involved in the mammalian target of rapamycin (mTOR) signaling pathway. From PND 50 to 55, a battery of behavioral tests relevant to anxiety and memory were then administered. Analysis of the results indicated that the pups, particularly the pubertal female offspring, showed anxiety-like behavior. Moreover, the pubertal offspring showed cognitive impairments and fat accumulation. Furthermore, the relative mRNA expression of genes involved in the mTOR signaling pathway in females on PND 22 was elevated, whereas the expression of N-methyl-d-aspartate receptor 2B (NR2B) was reduced. Together, the results showed that perinatal SMM exposure perturbs neuroendocrine functions, and further alters gene expression in the mTOR pathway and NR2B gene expression early in life, which may contribute to brain dysfunction in pubertal life.

2020 ◽  
Vol 27 ◽  
Author(s):  
Naser-Aldin Lashgari ◽  
Nazanin Momeni Roudsari ◽  
Saeideh Momtaz ◽  
Negar Ghanaatian ◽  
Parichehr Kohansal ◽  
...  

: Inflammatory bowel disease (IBD) is a general term for a group of chronic and progressive disorders. Several cellular and biomolecular pathways are implicated in the pathogenesis of IBD, yet the etiology is unclear. Activation of the mammalian target of rapamycin (mTOR) pathway in the intestinal epithelial cells was also shown to induce inflammation. This review focuses on the inhibition of the mTOR signaling pathway and its potential application in treating IBD. We also provide an overview on plant-derived compounds that are beneficial for the IBD management through modulation of the mTOR pathway. Data were extracted from clinical, in vitro and in vivo studies published in English between 1995 and May 2019, which were collected from PubMed, Google Scholar, Scopus and Cochrane library databases. Results of various studies implied that inhibition of the mTOR signaling pathway downregulates the inflammatory processes and cytokines involved in IBD. In this context, a number of natural products might reverse the pathological features of the disease. Furthermore, mTOR provides a novel drug target for IBD. Comprehensive clinical studies are required to confirm the efficacy of mTOR inhibitors in treating IBD.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jingying Zhou ◽  
Xue Huo ◽  
Benson O. A. Botchway ◽  
Luyao Xu ◽  
Xiaofang Meng ◽  
...  

Spinal cord injury (SCI) causes a high rate of morbidity and disability. The clinical features of SCI are divided into acute, subacute, and chronic phases according to its pathophysiological events. The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in cell death and inflammation in the acute phase and neuroregeneration in the subacute/chronic phases at different times. Resveratrol has the potential of regulating cell growth, proliferation, metabolism, and angiogenesis through the mTOR signaling pathway. Herein, we explicate the role of resveratrol in the repair of SCI through the inhibition of the mTOR signaling pathway. The inhibition of the mTOR pathway by resveratrol has the potential of serving as a neuronal restorative mechanism following SCI.


Endocrinology ◽  
2009 ◽  
Vol 150 (10) ◽  
pp. 4672-4680 ◽  
Author(s):  
Shabana Jaffer ◽  
Oksana Shynlova ◽  
Stephen Lye

Abstract The adaptive growth of the uterus during gestation involves gradual changes in cellular phenotypes from the early proliferative to the intermediate synthetic phase of cellular hypertrophy, ending in the final contractile/labour phenotype. The mammalian target of rapamycin (mTOR) signaling pathway regulates cell growth and proliferation in many tissues. We hypothesized that mTOR was a mediator of hormone-initiated myometrial hyperplasia during gestation. The protein expression and phosphorylation levels of mTOR, its upstream regulators [insulin receptor substrate-1, phosphoinositide-3-kinase (PI3K), Akt], and downstream effectors [S6-kinase-1 (S6K1) and eI4FE-binding protein 1 (4EBP1)] were analyzed throughout normal pregnancy in rats. In addition, we used an ovariectomized (OVX) rat model to analyze the modulation of the mTOR pathway and proliferative activity of the uterine myocytes by estradiol alone and in combination with the mTOR-specific inhibitor rapamycin. Our results demonstrate that insulin receptor substrate-1 protein levels and the phosphorylated (activated) forms of PI3K, mTOR, and S6K1 were significantly up-regulated in the rat myometrium during the proliferative phase of pregnancy. Treatment of the OVX rats with estradiol caused a transient increase in IGF-I followed by an up-regulation of the PI3K/mTOR pathway, which became apparent by a cascade of phosphorylation reactions (P-P85, P-Akt, P-mTOR, P-S6K1, and P-4EBP1). Rapamycin blocked activation of P-mTOR, P-S6K1, and P-4EBP1 proteins and significantly reduced the number of proliferating cells in the myometrium of OVX rats. Our in vivo data demonstrate that estradiol was able to activate the PI3K/mTOR signaling pathway in uterine myocytes and suggest that this activation is responsible for the induction of myometrial hyperplasia during early gestation.


2021 ◽  
Author(s):  
Xueyu Wang ◽  
Zhiqiang Wei ◽  
Yongfang Jiang ◽  
Zhongji Meng ◽  
Mengji Lu

AbstractMammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that includes mTOR complex (mTORC) 1 and mTORC2. The mTOR pathway is activated in viral hepatitis, including hepatitis B virus (HBV) infection-induced hepatitis. Currently, chronic HBV infection remains one of the most serious public health issues worldwide. The unavailability of effective therapeutic strategies for HBV suggests that clarification of the pathogenesis of HBV infection is urgently required. Increasing evidence has shown that HBV infection can activate the mTOR pathway, indicating that HBV utilizes or hijacks the mTOR pathway to benefit its own replication. Therefore, the mTOR signaling pathway might be a crucial target for controlling HBV infection. Here, we summarize and discuss the latest findings from model biology research regarding the interaction between the mTOR signaling pathway and HBV replication.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hajer Tlili ◽  
Anca Macovei ◽  
Daniela Buonocore ◽  
Manuela Lanzafame ◽  
Hanen Najjaa ◽  
...  

Abstract Background Hyperactivation of mechanistic target of rapamycin (mTOR) signaling pathway is involved in the regulation of cellular growth, proliferation, and more in general, is a common phenomenon in most types of cancers. Thus, natural substances targeting this pathway can be of great therapeutic potential in supporting the treatment of tumor patients. Rhus tripartita (Ucria) Grande is a plant growing in desertic areas which is traditionally used for the treatment of several diseases in Tunisia. In the present work, the biochemical profile of the main compounds present in the plant leaf extract was determined and the anti-leukemic potential of the plant extracts against acute monocytic leukaemia (AML) THP-1 cells was investigated. Methods After HPLC identification of some phenolic compounds present in the plant extract and the quantification of saponin content, the cytotoxic effect of Rhus tripartita extracts on THP-1 cell culture was evaluated using the colorimetric MTT assay for cell viability. THP-1 cells were incubated with medium containing the relative IC50 concentrations of total plant extract, saponin extract and some standard compounds (rutin (R); kaempferol (K); mixture of catechin, epicatechin, and epicatechin-gallate (CEEG); ellagic acid (EA). Finally, qRT-PCR and western blotting analysis were used to evaluate the effect of some flavonoids present in a crude extract of polyphenols and the total extract of saponins on cell survival and apoptosis. Results Analysis of expression level of some gene (PIK3CA, PTEN, AKT1, mTOR, EIF4E, RPS6KB1, and TSC1) involved in the mTOR pathway and the phosphorylation of S6 and AKT proteins allowed to observe that a total Rhus tripartita extract and some of the compounds found in the extract controls THP-1 cell proliferation and apoptosis via regulation of the PI3K-Akt-mTOR signaling pathway. Conclusion Rhus tripartita-induced inhibition of cell cycle and induction of apoptosis may involve the mTOR pathway. Therefore, Rhus tripartita extract may be a useful candidate as a natural anti-cancer drug to support the treatment of AML.


2021 ◽  
Vol 22 (5) ◽  
pp. 2274
Author(s):  
Hyun-Su Lee ◽  
Eun-Nam Kim ◽  
Gil-Saeng Jeong

Methamphetamine (METH) is a highly addictive drug that induces irreversible damage to neuronal cells and pathological malfunction in the brain. Aromadendrin, isolated from the flowers of Chionanthus retusus, has been shown to have anti-inflammatory or anti-tumor activity. Nevertheless, it has been reported that METH exacerbates neurotoxicity by inducing endoplasmic reticulum (ER) stress via the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in neuronal cells. There is little evidence that aromadendrin protects cells from neurotoxicity induced by METH. In this study, we found that aromadendrin partially suppressed the METH-induced cell death in SH-SY5y cells without causing cytotoxicity. Aromadendrin regulated METH-induced ER stress by preserving the phosphorylation of the PI3K/Akt/mTOR signaling pathway in METH-exposed SH-SY5y cells. In addition, aromadendrin mitigated METH-induced autophagic and the apoptotic pathways in METH-exposed SH-SY5y cells. Mechanistic studies revealed that pre-treatment with aromadendrin restored the expression of anti-apoptotic proteins in METH-exposed conditions. The inhibitor assay confirmed that aromadendrin-mediated restoration of mTOR phosphorylation protected cells from autophagy and apoptosis in METH-exposed cells. Therefore, these findings suggest that aromadendrin relatively has a protective effect on SH-SY5y cells against autophagy and apoptosis induced by METH via regulation of ER stress and the PI3K/Akt/mTOR signaling pathway.


2020 ◽  
Vol 159 ◽  
pp. S55
Author(s):  
Elena Kalinina ◽  
Aseel Ali Hasan ◽  
Albina Petrova ◽  
Maria Novichkova ◽  
Dmitry Zhdanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document