Of streaming hepatocytes and meandering sinusoids

1994 ◽  
Vol 13 (9) ◽  
pp. 604-605
Author(s):  
Alan J Paine

The fate of normal hepatocytes in adult rat liver was studied after genetic labelling using the Escherichia coli β-galactosidase gene coupled to a nuclear localisation signal. The marker gene was introduced by direct in vivo retroviral-mediated gene transfer into hepatocytes 24 h after partial hepatectomy. Analysis of β-galactosidase expression in the liver at various times after gene transfer revealed that labelled hepatocytes were distributed throughout the entire lobule with a predominance in the periportal and mediolobular regions. Long-term experiments demonstrated that division of hepatocytes did occur as was revealed by the increasing number of β-galactosidase-positive cells in isolated clusters. There was no evidence for the participation of stem cells in this process. Moreover, we found that after more than one year, the pattern of distribution of positive cells within the lobule was not modified. This suggests that hepatocytes do not migrate from the portal space to the perivenous region, as has been previously hypothesised.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2113-2113
Author(s):  
Peter Kurre ◽  
Ponni Anandakumar ◽  
Vladimir A. Lesnikov ◽  
Hans-Peter Kiem

Abstract Most gene transfer models using Moloney murine leukemia virus (MLV) - derived vectors to target hematopoietic repopulating cells require progenitor cell enrichment and extended ex vivo culture for efficient long-term marking. Both may result in qualitative, and/or quantitative, loss of stem cells thereby limiting gene transfer rates in vivo. This can be a critical obstacle in candidate applications with exhausted autologous stem cell pools, such as Fanconi Anemia. Among the advantages of HIV-derived lentivirus vectors is their ability to transduce non dividing cells, permitting shortened ex vivo culture durations while maintaining gene transfer to long-term repopulating cells. We have previously reported long-term gene transfer rates of 12–40% after VSV-G/ lentivirus vector transduction of murine stem cells by targeting unseparated marrow cells after reduced prestimulation and a single 12 hour vector exposure (Kurre et al., Mol. Ther. 2004 Jun;9(6):914–22). We herein report studies showing maintenance of gene transfer efficiency in this model at drastically reduced ex vivo vector exposure times. In initial in vitro experiments we studied cytokine support, vector particle density, and minimum exposure duration requirements for efficient gene transfer to unseparated marrow cells. We determined that fibronectin fragment support was critical in maintaining minimum gene transfer efficiencies, even during brief 1, or 3-hour exposures. In an effort to extend these in vitro findings targeting a mixed leukocyte population and explore the feasibility in vivo, we next performed repopulation experiments in myeloablated murine recipients. Unseparated marrow cells harvested from donor animals were depleted of red blood cells, washed and immediately transduced on fibronectin fragment in the presence of murine stem cell factor. Following a 1 hour exposure to lentivector (VSV-G/RRLsin-cPPThPGK-EGFPwpre), cells were washed repeatedly, resuspended and injected into myeloablated recipients (n=10). Animals showed ready hematopoietic reconstitution and demonstrated average GFP marking of 31% (range: 17–41.2%) in peripheral blood 20 weeks after transplantation. Gene marking in secondary recipients 9 weeks after reconstitution (n=15, 3 recipient animals per donor) persisted at 29% on average (range 14.9–66%). Results also demonstrate transduction of granulocytes, B- and T-lymphocytes, as well as stable long-term GFP expression in primary and secondary animals. Copy number determination by real-time PCR in marrow cells from primary recipients shows an average of 4 proviral copies (range 2.1–8.1) per GFP-expressing cell. Our studies confirm that HIV-derived lentivirus vectors are ideally suited for the transduction of murine long-term repopulating cells. We hypothesize that ultra-short transduction actively preserves stem cell content in the inoculum. Moreover, this protocol represents an ideal platform for subsequent in vivo selection to achieve complete phenotype correction and high-level therapeutic chimerism required for some applications. We anticipate that our strategy may prove particularly useful in situations where the target stem cell quantity is greatly limited and cells are of poor ex vivo viability.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2021 ◽  
Vol 22 (13) ◽  
pp. 6663
Author(s):  
Maurycy Jankowski ◽  
Mariusz Kaczmarek ◽  
Grzegorz Wąsiatycz ◽  
Claudia Dompe ◽  
Paul Mozdziak ◽  
...  

Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells’ application in regenerative medicine.


Blood ◽  
1992 ◽  
Vol 79 (10) ◽  
pp. 2694-2700 ◽  
Author(s):  
DR Rill ◽  
RC Moen ◽  
M Buschle ◽  
C Bartholomew ◽  
NK Foreman ◽  
...  

Abstract Autologous bone marrow transplantation (ABMT) is widely used as treatment for malignant disease. Although the major cause of treatment failure is relapse, it is unknown if this arises entirely because of residual disease in the patient or whether contaminating cells in the rescuing marrow contribute. Attempts to purge marrow of its putative residual malignant cells may delay hematopoietic reconstitution and are of uncertain efficacy. We now describe how retrovirus-mediated gene transfer may be used to elucidate the source of relapse after ABMT for acute myeloid leukemia and to evaluate the efficacy of purging. Clonogenic myeloid leukemic blast cells in patient marrow can be transduced with the NeoR gene-containing helper-free retrovirus, LNL6, with an efficacy of 0% to 23.5% (mean, 10.5%). Transduced colonies grow in selective media and the presence of the marker gene can be confirmed in individual malignant colonies by polymerase chain reaction. If such malignant cells remain in harvested “remission” marrow, they will therefore be marked after exposure to LNL6. Detection of the marker gene in the malignant cells present at any later relapse would be firm evidence that residual disease contributed to disease recurrence, and would permit rapid subsequent evaluation of purging techniques. The technique also marks normal marrow progenitors from patients with acute myeloblastic leukemia. These colony-forming cells can be detected in long-term marrow cultures at a frequency of 1% to 18% for up to 10 weeks after exposure to the vector. Animal models and analysis of probability tables both suggest that these levels of marking in vitro are sufficient to provide information about the mechanisms of relapse and the biology of marrow regeneration in vivo. These preclinical data form part of the basis for current clinical studies of gene transfer into marrow before ABMT.


Nanoscale ◽  
2020 ◽  
Author(s):  
Naishun Liao ◽  
Da Zhang ◽  
Ming Wu ◽  
Huang-Hao Yang ◽  
Xiaolong Liu ◽  
...  

Adipose tissue derived mesenchymal stem cell (ADSC)-based therapy is attractive for liver diseases, but the long-term therapeutic outcome is still far from satisfaction due to low hepatic engraftment efficiency of...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dandan Cao ◽  
Rachel W. S. Chan ◽  
Ernest H. Y. Ng ◽  
Kristina Gemzell-Danielsson ◽  
William S. B. Yeung

Abstract Background Endometrial mesenchymal-like stromal/stem cells (eMSCs) have been proposed as adult stem cells contributing to endometrial regeneration. One set of perivascular markers (CD140b&CD146) has been widely used to enrich eMSCs. Although eMSCs are easily accessible for regenerative medicine and have long been studied, their cellular heterogeneity, relationship to primary counterpart, remains largely unclear. Methods In this study, we applied 10X genomics single-cell RNA sequencing (scRNA-seq) to cultured human CD140b+CD146+ endometrial perivascular cells (ePCs) from menstrual and secretory endometrium. We also analyzed publicly available scRNA-seq data of primary endometrium and performed transcriptome comparison between cultured ePCs and primary ePCs at single-cell level. Results Transcriptomic expression-based clustering revealed limited heterogeneity within cultured menstrual and secretory ePCs. A main subpopulation and a small stress-induced subpopulation were identified in secretory and menstrual ePCs. Cell identity analysis demonstrated the similar cellular composition in secretory and menstrual ePCs. Marker gene expression analysis showed that the main subpopulations identified from cultured secretory and menstrual ePCs simultaneously expressed genes marking mesenchymal stem cell (MSC), perivascular cell, smooth muscle cell, and stromal fibroblast. GO enrichment analysis revealed that genes upregulated in the main subpopulation enriched in actin filament organization, cellular division, etc., while genes upregulated in the small subpopulation enriched in extracellular matrix disassembly, stress response, etc. By comparing subpopulations of cultured ePCs to the publicly available primary endometrial cells, it was found that the main subpopulation identified from cultured ePCs was culture-unique which was unlike primary ePCs or primary endometrial stromal fibroblast cells. Conclusion In summary, these data for the first time provides a single-cell atlas of the cultured human CD140b+CD146+ ePCs. The identification of culture-unique relatively homogenous cell population of CD140b+CD146+ ePCs underscores the importance of in vivo microenvironment in maintaining cellular identity.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2309-2309
Author(s):  
Jian Huang ◽  
Peter S. Klein

Abstract Abstract 2309 Hematopoietic stem cells (HSCs) maintain the ability to self-renew and to differentiate into all lineages of the blood. The signaling pathways regulating hematopoietic stem cell (HSCs) self-renewal and differentiation are not well understood. We are very interested in understanding the roles of glycogen synthase kinase-3 (Gsk3) and the signaling pathways regulated by Gsk3 in HSCs. In our previous study (Journal of Clinical Investigation, December 2009) using loss of function approaches (inhibitors, RNAi, and knockout) in mice, we found that Gsk3 plays a pivotal role in controlling the decision between self-renewal and differentiation of HSCs. Disruption of Gsk3 in bone marrow transiently expands HSCs in a b-catenin dependent manner, consistent with a role for Wnt signaling. However, in long-term repopulation assays, disruption of Gsk3 progressively depletes HSCs through activation of mTOR. This long-term HSC depletion is prevented by mTOR inhibition and exacerbated by b-catenin knockout. Thus GSK3 regulates both Wnt and mTOR signaling in HSCs, with opposing effects on HSC self-renewal such that inhibition of Gsk3 in the presence of rapamycin expands the HSC pool in vivo. In the current study, we found that suppression of the mammalian target of rapamycin (mTOR) pathway, an established nutrient sensor, combined with activation of canonical Wnt/ß-catenin signaling, allows the ex vivo maintenance of human and mouse long-term HSCs under cytokine-free conditions. We also show that combining two clinically approved medications that activate Wnt/ß-catenin signaling and inhibit mTOR increases the number of long-term HSCs in vivo. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Xiao Fang ◽  
Xiong Fang ◽  
Yujia Mao ◽  
Aaron Ciechanover ◽  
Yan Xu ◽  
...  

Abstract Background Hematopoietic stem cell (HSC) transplantation is an effective treatment strategy for many types of diseases. Peripheral blood (PB) is the most commonly used source of bone marrow (BM)-derived stem cells for current HSC transplantation. However, PB usually contains very few HSCs under normal conditions, as these cells are normally retained within the BM. This retention depends on the interaction between the CXC chemokine receptor 4 (CXCR4) expressed on the HSCs and its natural chemokine ligand, stromal cell-derived factor (SDF)-1α (also named CXCL12) present in the BM stromal microenvironment. In clinical practice, blocking this interaction with a CXCR4 antagonist can induce the rapid mobilization of HSCs from the BM into the PB.Methods C3H/HEJ, DBA/2, CD45.1+, CD45.2+ mice and monkeys were employed in colony-forming unit (CFU) assays, flow cytometry assays, and competitive/non-competitive transplantation assays, to assess the short-term mobilization efficacy of HF51116 and the long-term repopulating (LTR) ability of HSCs. Kinetics of different blood cells and the concentration of HF51116 in PB were also explored by blood routine examinations and pharmacokinetic assays. Results In this paper, we report that a novel small molecule CXCR4 antagonist, HF51116, which was designed and synthesized by our laboratory, can rapidly and potently mobilize HSCs from BM to PB in mice and monkeys. HF51116 not only mobilized HSCs when used alone but also synergized with the mobilizing effects of granulocyte-colony stimulating factor (G-CSF) after co-administration. Following mobilization by HF51116 and G-CSF, the long-term repopulating (LTR) and self-renewing HSCs were sufficiently engrafted in primary and secondary lethally irradiated mice and were able to rescue and support long-term mouse survival. In monkeys, HF51116 exhibited strong HSC mobilization activity and quickly reached the highest in vivo blood drug concentration. Conclusions These results demonstrate that HF51116 is a new promising stem cell mobilizer which specifically targets CXCR4 and merits further preclinical and clinical studies.


Sign in / Sign up

Export Citation Format

Share Document