Stem cells for lupus nephritis: a concise review of current knowledge

Lupus ◽  
2018 ◽  
Vol 27 (12) ◽  
pp. 1881-1897 ◽  
Author(s):  
P D Sattwika ◽  
R Mustafa ◽  
A Paramaiswari ◽  
E H Herningtyas

Lupus nephritis (LN), a common manifestation of systemic lupus erythematosus (SLE), accounts for significant morbidity and mortality in SLE patients. Since the available standard therapies and biologic agents for LN are yet to achieve the desired response and have considerable secondary effects, stem cell therapy has now emerged as a new approach. This therapy involves the transplantation of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Our current review will highlight the progress of stem cell therapy for LN, along with the challenges encountered and the future direction of this approach.

2011 ◽  
Vol 300 (5) ◽  
pp. G684-G696 ◽  
Author(s):  
R. C. Mifflin ◽  
I. V. Pinchuk ◽  
J. I. Saada ◽  
D. W. Powell

The subepithelial intestinal myofibroblast is an important cell orchestrating many diverse functions in the intestine and is involved in growth and repair, tumorigenesis, inflammation, and fibrosis. The myofibroblast is but one of several α-smooth muscle actin-positive (α-SMA+) mesenchymal cells present within the intestinal lamina propria, including vascular pericytes, bone marrow-derived stem cells (mesenchymal stem cells or hematopoietic stem cells), muscularis mucosae, and the lymphatic pericytes (colon) and organized smooth muscle (small intestine) associated with the lymphatic lacteals. These other mesenchymal cells perform many of the functions previously attributed to subepithelial myofibroblasts. This review discusses the definition of a myofibroblast and reconsiders whether the α-SMA+ subepithelial cells in the intestine are myofibroblasts or other types of mesenchymal cells, i.e., pericytes. Current information about specific, or not so specific, molecular markers of lamina propria mesenchymal cells is reviewed, as well as the origins of intestinal myofibroblasts and pericytes in the intestinal lamina propria and their replenishment after injury. Current concepts and research on stem cell therapy for intestinal inflammation are summarized. Information about the stem cell origin of intestinal stromal cells may inform future stem cell therapies to treat human inflammatory bowel disease (IBD).


2019 ◽  
Vol 64 (No. 10) ◽  
pp. 462-466
Author(s):  
M Ko ◽  
TH Kim ◽  
Y Kim ◽  
D Kim ◽  
JO Ahn ◽  
...  

A 6-year-old, intact female, Maltese presented with limited movement of the hind limbs and intermittent pruritus for three months. The patient was diagnosed with systemic lupus erythematosus. Conventional immunosuppressive therapy was attempted for 70 days; however, the patient still suffered from life-threatening pancreatitis and hepatopathy. Therefore, we tried canine adipose-derived mesenchymal stem cells for immunomodulation and liver protection. After 6-months of the stem cell therapy, the patient’s walking and hepatopathy improved. These findings indicate that stem cell therapy may be another option for systemic lupus erythematosus in dogs.


Author(s):  
Nursuaidah Abdullah ◽  
Marjanu Hikmah Elias

Type 1 diabetes (T1D) is a deficiency in insulin production which is mainly due to loss of ?-cell pancreatic islets. Patients with T1D need to be given exogenous insulin regularly. While improvements in the delivery of insulin and glucose monitoring methods have been effective in improving patient safety, insulin therapy is not a cure and is often associated with complications and debilitating hypoglycaemic episodes. Meanwhile, pancreas or islet transplantation as a gold standard only promises temporary freedom from exogenous insulin and suffers from issues of its own. Stem cell therapy may provide a more permanent solution, given stem cells’ immunomodulatory characteristics and ability to self-renew and distinguish into specific cells. In this sense, the therapeutic potentials of stem cells are addressed in this study. These stem cells cover a wide range of treatments for T1D including embryonic stem cells, induced pluripotent stem cells, bone-marrow derived hematopoietic stem cells and multipotent mesenchymal stromal cells. The challenges faced by the current stem cell transplant in T1D treatment and Islamic viewpoints regarding ethics in stem cell research and therapy are also discussed. In conclusion, stem cell therapy offers a safe and efficient alternative treatment for T1D. However, besides the fatwa from Fatwa Committee of Selangor, the lack of Malaysian stem cells ethics should be further addressed.


2021 ◽  
Vol 22 (4) ◽  
pp. 2153
Author(s):  
Farzane Sivandzade ◽  
Luca Cucullo

Neurodegenerative diseases resulting from the progressive loss of structure and/or function of neurons contribute to different paralysis degrees and loss of cognition and sensation. The lack of successful curative therapies for neurodegenerative disorders leads to a considerable burden on society and a high economic impact. Over the past 20 years, regenerative cell therapy, also known as stem cell therapy, has provided an excellent opportunity to investigate potentially powerful innovative strategies for treating neurodegenerative diseases. This is due to stem cells’ capability to repair injured neuronal tissue by replacing the damaged or lost cells with differentiated cells, providing a conducive environment that is in favor of regeneration, or protecting the existing healthy neurons and glial cells from further damage. Thus, in this review, the various types of stem cells, the current knowledge of stem-cell-based therapies in neurodegenerative diseases, and the recent advances in this field are summarized. Indeed, a better understanding and further studies of stem cell technologies cause progress into realistic and efficacious treatments of neurodegenerative disorders.


2021 ◽  
Vol 0 ◽  
pp. 1-15
Author(s):  
Sujay Khandpur ◽  
Savera Gupta ◽  
D. R. Gunaabalaji

Stem cells are precursor cells present in many tissues with ability to differentiate into various types of cells. This interesting property of plasticity can have therapeutic implications and there has been substantial research in this field in last few decades. As a result, stem cell therapy is now used as a therapeutic modality in many conditions, and has made its way in dermatology too. Stem cells can be classified on the basis of their source and differentiating capacity. In skin, they are present in the inter-follicular epidermis, hair follicle, dermis and adipose tissue, which help in maintaining normal skin homeostasis and repair and regeneration during injury. In view of their unique properties, they have been employed in treatment of several dermatoses including systemic sclerosis, systemic lupus erythematosus, scleromyxedema, alopecia, Merkel cell carcinoma, pemphigus vulgaris, psoriasis, wound healing, epidermolysis bullosa and even aesthetic medicine, with variable success. The advent of stem cell therapy has undoubtedly brought us closer to curative treatment of disorders previously considered untreatable. Nevertheless, there are multiple lacunae which need to be addressed including ideal patient selection, timing of intervention, appropriate conditioning regimens, post-intervention care and cost effectiveness. Further research in these aspects would help optimize the results of stem cell therapy.


2019 ◽  
Vol 20 (4) ◽  
pp. 388-398 ◽  
Author(s):  
Rakesh Sharma

Stem Cell Research and Tissue Engineering, in present time, have emerged as a legalized and regulated stem cell treatment option globally, but scientifically, their success is unestablished. Novel stem cell-based therapies have evolved as innovative and routine clinical solutions by commercial companies and hospitals across the world. Such rampant spread of stem cell clinics throughout UK, US, Europe and Asia reflect the public encouragement of benefits to incurable diseases. However, ever growing stem cell therapy developments need constant dogwatch and careful policy making by government regulatory bodies for prompt action in case of any untoward public concern. Therefore, researchers and physicians must keep themselves abreast of current knowledge on stem cells, tissue engineering devices in treatment and its safe legal limits. With this aim, stem cell scienctific developments, treatment options and legal scenario are introduced here to beginner or actively inolved scientists and physicians. Introduction to stem cell therapy will provide basic information to beginner researchers and practice physicians on engineered stem cell research concepts and present stem cell therapy federal regulations in different North American, European and Asian countries. FDA, CDC, EU, ICMR government policies in different countries include information on the current legal position, ethical policies, regulatory oversight and relevant laws.


Author(s):  
S. Sakinah ◽  
Sivan Padma Priya ◽  
Pooi Ling Mok ◽  
Rusheni Munisvaradass ◽  
Seoh Wei Teh ◽  
...  

Extensive clinical efforts have been made to control the severity of dengue diseases; however, the dengue morbidity and mortality have not declined. Dengue virus (DENV) can infect and cause systemic damage in many organs, resulting in organ failure. Here, we present a novel report showing a tailored stem-cell-based therapy that can aid in viral clearance and rescue liver cells from further damage during dengue infection. We administered a combination of hematopoietic stem cells and endothelial progenitor cells in a DENV-infected BALB/c mouse model and found that delivery of this cell cocktail had improved their liver functions, confirmed by hematology, histopathology, and next-generation sequencing. These stem and progenitor cells can differentiate into target cells and repair the damaged tissues. In addition, the regime can regulate endothelial proliferation and permeability, modulate inflammatory reactions, enhance extracellular matrix production and angiogenesis, and secrete an array of growth factors to create an enhanced milieu for cell reparation. No previous study has been published on the treatment of dengue infection using stem cells combination. In conclusion, dengue-induced liver damage was rescued by administration of stem cell therapy, with less apoptosis and improved repair and regeneration in the dengue mouse model.


Lupus ◽  
2010 ◽  
Vol 19 (12) ◽  
pp. 1468-1473 ◽  
Author(s):  
L. Sun

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with multiorgan involvement and high mortality, which was reduced because of the most widely and classically used immunosuppressive therapies. However, some patients continue to have significant mortality. So a shift in the approach to the treatment of SLE is needed. In the past decade, most transplants have been performed in the treatment of SLE with allogeneic or autologous hematopoietic stem cells and currently emerging mesenchymal stem cells. There are some important differences between the two procedures.


Sign in / Sign up

Export Citation Format

Share Document