Anti-TRIM21 antibody is associated with aberrant B-cell function and type I interferon production in systemic lupus erythematosus

Lupus ◽  
2021 ◽  
pp. 096120332110422
Author(s):  
Yosuke Kunishita ◽  
Ryusuke Yoshimi ◽  
Reikou Kamiyama ◽  
Daiga Kishimoto ◽  
Takaaki Komiya ◽  
...  

Background TRIM21 is a member of the tripartite motif family proteins and is one of the autoantigens which react with anti-SS-A antibody (Ab) present in sera of patients with systemic lupus erythematosus (SLE) and Sjögren’s syndrome. Previous studies have shown that TRIM21 dysfunction promotes aberrant B-cell differentiation and Ab production in SLE, and anti-TRIM21 Ab may be related to the TRIM21 dysfunction in human SLE pathogenesis. Here, we examined the relationship between anti-TRIM21 Ab and clinical and immunological characteristics in SLE patients. Methods Twenty-seven patients with SLE (23 women and four men) before immunosuppressive therapies, who fulfilled the revised 1997 American College of Rheumatology criteria for SLE, and four healthy controls (3 women and one man) were enrolled in the study. SLE patients were divided into two groups according to the seropositivity for anti-TRIM21 Ab. Serum anti-TRIM21 Ab levels were measured using enzyme-linked immunosorbent assays. The serum levels of cytokines and immunoglobulins were measured by cytometer beads arrays. The expression levels of TRIM21 protein in peripheral mononuclear cells (PBMCs) from SLE patients were evaluated by Western blotting. Results Sixteen and 9 patients showed seronegativity and seropositivity for anti-TRIM21 Ab, respectively. There were no significant differences in the background parameters, including female ratio, age, disease duration, SLE activity, and laboratory data between the two groups. The serum levels of interferon (IFN)-β were significantly higher in patients with anti-TRIM21 Ab as compared with those without anti-TRIM21 Ab ( P = .043). The levels of IgG1 and IgA were significantly higher in SLE patients with anti-TRIM21 Ab as compared with those without anti-TRIM21 Ab ( P = .0022 and .032, respectively). The PBMCs of patients with anti-TRIM21 Ab showed a significantly lower expression of TRIM21 protein as compared with those of patients without anti-TRIM21 Ab ( P = .014). Conclusions Anti-TRIM21 Ab seropositivity was related to B-cell abnormalities and type I IFN overproduction in SLE patients. These findings suggest that anti-TRIM21 Ab may have an inhibitory effect on TRIM21 functions and be a novel biomarker for the level of dependence on type I IFN overproduction and B-cell abnormalities.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 4-5
Author(s):  
A. Aue ◽  
F. Szelinski ◽  
S. Weißenberg ◽  
A. Wiedemann ◽  
T. Rose ◽  
...  

Background:Systemic lupus erythematosus (SLE) is characterized by two pathogenic key signatures, type I interferon (IFN) (1.) and B-cell abnormalities (2.). How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) – signal transducer and activator of transcription (STAT).Objectives:JAK-STAT inhibition is an attractive therapeutic possibility for SLE (3.). We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared to other autoimmune diseases and healthy controls (HD) and related it to disease activity.Methods:Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T-cells of 21 HD, 10 rheumatoid arthritis (RA), 7 primary Sjögren’s (pSS) and 22 SLE patients was analyzed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs of SLE patients and HD after IFNα and IFNγ incubation were further investigated.Results:SLE patients showed substantially higher STAT1 but not pSTAT1 in B and T-cell subsets. Increased STAT1 expression in B cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker (4.). STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ.Figure 1.Significantly increased expression of STAT1 by SLE B cells(A) Representative histograms of baseline expression of STAT1, pSTAT1, STAT3 and pSTAT3 in CD19+ B cells of SLE patients (orange), HD (black) and isotype controls (grey). (B) Baseline expression of STAT1 and pSTAT1 or (C) STAT3 and pSTAT3 in CD20+CD27-, CD20+CD27+ and CD20lowCD27high B-lineage cells from SLE (orange) patients compared to those from HD (black). Mann Whitney test; ****p≤0.0001.Figure 2.Correlation of STAT1 expression by SLE B cells correlates with type I IFN signature (Siglec-1, CD169) and clinical activity (SLEDAI).Correlation of STAT1 expression in CD20+CD27- näive (p<0.0001, r=0.8766), CD20+CD27+ memory (p<0.0001, r=0.8556) and CD20lowCD27high (p<0.0001, r=0.9396) B cells from SLE patients with (A) Siglec-1 (CD169) expression on CD14+ cells as parameter of type I IFN signature and (B) lupus disease activity (SLEDAI score). Spearman rank coefficient (r) was calculated to identify correlations between these parameters. *p≤0.05, **p≤0.01. (C) STAT1 expression in B cell subsets of a previously undiagnosed, active SLE patient who was subsequently treated with two dosages of prednisolone and reanalyzed.Conclusion:Enhanced expression of STAT1 by B-cells candidates as key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold promise to block STAT1 expression and control plasmablast induction in SLE.References:[1]Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5.[2]Lino AC, Dorner T, Bar-Or A, Fillatreau S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev. 2016;269(1):130-44.[3]Dorner T, Lipsky PE. Beyond pan-B-cell-directed therapy - new avenues and insights into the pathogenesis of SLE. Nat Rev Rheumatol. 2016;12(11):645-57.[4]Biesen R, Demir C, Barkhudarova F, Grun JR, Steinbrich-Zollner M, Backhaus M, et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 2008;58(4):1136-45.Disclosure of Interests:Arman Aue: None declared, Franziska Szelinski: None declared, Sarah Weißenberg: None declared, Annika Wiedemann: None declared, Thomas Rose: None declared, Andreia Lino: None declared, Thomas Dörner Grant/research support from: Janssen, Novartis, Roche, UCB, Consultant of: Abbvie, Celgene, Eli Lilly, Roche, Janssen, EMD, Speakers bureau: Eli Lilly, Roche, Samsung, Janssen


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Norzawani Buang ◽  
Lunnathaya Tapeng ◽  
Victor Gray ◽  
Alessandro Sardini ◽  
Chad Whilding ◽  
...  

AbstractThe majority of patients with systemic lupus erythematosus (SLE) have high expression of type I IFN-stimulated genes. Mitochondrial abnormalities have also been reported, but the contribution of type I IFN exposure to these changes is unknown. Here, we show downregulation of mitochondria-derived genes and mitochondria-associated metabolic pathways in IFN-High patients from transcriptomic analysis of CD4+ and CD8+ T cells. CD8+ T cells from these patients have enlarged mitochondria and lower spare respiratory capacity associated with increased cell death upon rechallenge with TCR stimulation. These mitochondrial abnormalities can be phenocopied by exposing CD8+ T cells from healthy volunteers to type I IFN and TCR stimulation. Mechanistically these ‘SLE-like’ conditions increase CD8+ T cell NAD+ consumption resulting in impaired mitochondrial respiration and reduced cell viability, both of which can be rectified by NAD+ supplementation. Our data suggest that type I IFN exposure contributes to SLE pathogenesis by promoting CD8+ T cell death via metabolic rewiring.


2018 ◽  
Vol 20 (1) ◽  
Author(s):  
M. Javad Wahadat ◽  
Iris L. A. Bodewes ◽  
Naomi I. Maria ◽  
Cornelia G. van Helden-Meeuwsen ◽  
Annette van Dijk-Hummelman ◽  
...  

Lupus ◽  
2019 ◽  
Vol 28 (11) ◽  
pp. 1337-1343 ◽  
Author(s):  
A Benitez ◽  
K Torralba ◽  
M Ngo ◽  
L M Salto ◽  
K S Choi ◽  
...  

Objective We evaluated the effects of the B-cell activating factor (BAFF)-targeting antibody Belimumab on human nonmemory B-cell pools. Human B-cell pools were identified using surface markers adapted from mouse studies that specifically assessed reductions in immature B cells due to BAFF depletion. Patients with systemic lupus erythematosus (SLE) have high levels of both BAFF and immature B cells. Mechanistic mouse studies provide a framework for understanding human responses to therapies that target B cells. Methods Peripheral blood mononuclear cells were isolated from healthy donors and SLE patients on Belimumab or standard-of-care therapy (SCT). Cells were stained for flow cytometry to identify B-cell subsets based on CD21/CD24. Differences in subset proportions were determined by one-way ANOVA and Tukey’s post hoc test. Results Patients treated with Belimumab show alterations in the nonmemory B-cell pool characterized by a decrease in the Transitional 2 (T2) subset ( p = 0.002), and an increase in the proportion of Transitional 1 (T1) cells ( p = 0.005) as compared with healthy donors and SCT patients. The naïve B-cell compartment showed no significant differences between the groups ( p = 0.293). Conclusion Using a translational approach, we show that Belimumab-mediated BAFF depletion reduces the T2 subset in patients, similar to observations in mouse models with BAFF depletion.


2020 ◽  
Author(s):  
Laura Barnabei ◽  
Hicham Lamrini ◽  
Mathieu Castela ◽  
Nadia Jeremiah ◽  
Marie-Claude Stolzenberg ◽  
...  

AbstractSystemic Lupus Erythematosus (SLE) is an autoimmune and inflammatory disease characterized by uncontrolled production of autoantibodies and inflammatory cytokines such as the type-I interferons. Due to the lack of precise pathophysiological mechanisms, treatments are based on broad unspecific immunossupression. To identify genetic factors associated with SLE we performed whole exome sequencing and identified two RELA heterozygous activating mutations in 3 early-onset and familial SLE cases. The corresponding RELA/p65 mutant were abundant in the nucleus but poorly activate transcription of genes controlled by NF-κB consensus sequences. The co-expression of the mutant and wild-type RELA/p65 strongly activated the expression of genes controlled by the IFNα-consensus sequences. These molecular mechanisms lead to the overproduction of type-I IFN in the patients’ cells. Our findings highlight a novel mechanism of autoimmunity where these new RELA mutants are transactivating the type-I IFN genes and are thus promoting type-I interferon production and early-onset SLE, thereby paving the way to the identification of new and specific therapeutic targets.SummaryHeterozygous RELA mutations are associated with Systemic Lupus Erythematosus, with increased expression of genes controlled by the IFNα-consensus sequences.


2021 ◽  
Author(s):  
Quentin Moyon ◽  
Delphine Sterlin ◽  
Makoto Miyara ◽  
Francois Anna ◽  
Alexis Mathian ◽  
...  

Objectives: Our aims were to evaluate Systemic Lupus Erythematosus (SLE) disease activity and SARS-CoV-2 specific immune responses after BNT162b2 vaccination. Methods: In this prospective study, disease activity and clinical assessments were recorded from the first dose of vaccine, until day 15 after the second dose in 126 SLE patients. SARS-CoV-2 antibody responses were measured against wild-type spike antigen while serum-neutralizing activity was assessed against the SARS-CoV-2 historical strain and variants of concerns (VOCs). Vaccine-specific T-cell responses were quantified by Interferon (IFN)-gamma; release assay after the second dose. Results: BNT162b2 was well tolerated and no statistically significant variations of BILAG and SLEDAI scores were observed throughout the study in SLE patients with active and inactive disease at baseline. Mycophenolate Mofetil (MMF) and Methotrexate (MTX) treatments were associated with drastically reduced BNT162b2 antibody-response (beta=-78; p=0.007, beta=-122; p<0.001, respectively). Anti-spike antibody response was positively associated with baseline total IgG serum levels, naive B cell frequencies (beta=2; p=0.018, beta=2.5; p=0.003) and SARS-CoV-2-specific T cell response (r=0.462; p=0.003). In responders, serum neutralization activity decreased against VOCs bearing the E484K mutation but remained detectable in a majority of patients. Conclusion: MMF, MTX and poor baseline humoral immune status, particularly: low naive B cell frequencies, are independently associated with impaired BNT162b2 mRNA antibody response, delineating SLE patients who might need adapted vaccine regimens and follow-up.


Sign in / Sign up

Export Citation Format

Share Document