Synthesis and characterization of novel methacrylate copolymers having pendant piperonyl group: monomer reactivity ratio, thermal degradation kinetics, and biological activity

2021 ◽  
Vol 29 (9_suppl) ◽  
pp. S1432-S1445
Author(s):  
Ibrahim Erol ◽  
Bayram Gencer ◽  
Zeki Gurler

In this study, 2-{[(2H-1,3-benzodioxol-5-yl)methyl]amino}-2-oxoethyl 2-methylprop-2-enoate (BMAOME) monomer was synthesized, and copolymers were prepared with glycidyl methacrylate (GMA). Structural characterizations of the compounds were performed using FTIR, 1H-, and 13C-NMR techniques. Monomer reactivity ratio values were calculated by Finemann–Ross (FR) and Kelen–Tudos (KT) methods. The Tg value of the polymers was determined by differential scanning calorimetry (DSC) and their thermal stability was determined by thermogravimetric analysis (TGA). The molecular weights (w and n) and polydispersity index of the polymers were determined by gel permeation chromatography. The Ea value of thermal decomposition was determined by using the Ozawa and Kissinger methods. The photo-stability of the copolymers was investigated. Furthermore, the photo-stability of the copolymers and the biological activity of polymers against different types of bacteria and fungi were investigated.

2018 ◽  
Vol 31 (1) ◽  
pp. 86-96 ◽  
Author(s):  
R Vini ◽  
S Thenmozhi ◽  
SC Murugavel

In this study, azomethine polyphosphonates were synthesized by solution polycondensation of phenylphosphonic dichloride with various azomethine diols such as [4-(4-hydroxy phenyl) iminomethyl] phenol, [(4-(4-hydroxy-3-methoxy phenyl) iminomethyl)] phenol and [4-(4-hydroxy-3-ethoxy phenyl) iminomethyl] phenol using triethylamine catalyst at ambient temperature. The structure of the synthesized polymers was confirmed by Fourier transform infrared and 1H-, 13C- and 31P- nuclear magnetic resonance spectroscopic techniques. Thermal properties of the polymers were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry under nitrogen atmosphere. The TGA data showed that the synthesized polyphosphonates produce high char yield at 600°C due to the presence of phosphorous atom in the polymer chain and hence have good flame-retardant properties. One of the synthesized polyphosphonate was blended with commercial diglycidyl ether of bisphenol-A (DGEBA) resin in various weight percentage and cured with commercial curing agent triethylene tetramine (TETA). The polyphosphonates-blended epoxy thermosets have tensile strength in the range of 5–41 MPa and the percentage of elongation at breaks was 4–18. It was found that the incorporation of polyphosphonates into epoxy thermoset decreased the tensile strength from 41 MPa to 5 MPa, whereas the elongation at break value increased with increase in the weight percentage of polyphosphonate. The influence of polyphosphonates on the flame retardancy of blended thermosets was examined by limiting oxygen index (LOI) and vertical burning (UL-94) tests and found that the polymer samples achieved an increased UL-94 rating and the LOI values were in the range of 24–26. Broido and Horowitz–Metzger methods have been used to study the thermal degradation kinetic parameters.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1114 ◽  
Author(s):  
Yani Luo ◽  
Jian Li ◽  
Derong Luo ◽  
Qingliang You ◽  
Zifeng Yang ◽  
...  

A novel tandem catalysis system consisted of salicylaldiminato binuclear/mononuclear titanium and 2,6-bis(imino)pyridyl iron complexes was developed to catalyze ethylene in-situ copolymerization. Linear low-density polyethylene (LLDPE) with varying molecular weight and branching degree was successfully prepared with ethylene as the sole monomer feed. The polymerization conditions, including the reaction temperature, the Fi/Ti molar ratio, and the structures of bi- or mononuclear Ti complexes were found to greatly influence the catalytic performances and the properties of obtained polymers. The polymers were characterized by differential scanning calorimetry (DSC), high temperature gel permeation chromatography (GPC) and high temperature 13C NMR spectroscopy, and found to contain ethyl, butyl, as well as some longer branches. The binuclear titanium complexes demonstrated excellent catalytic activity (up to 8.95 × 106 g/molTi·h·atm) and showed a strong positive comonomer effect when combined with the bisiminopyridyl Fe complex. The branching degree can be tuned from 2.53 to 22.89/1000C by changing the reaction conditions or using different copolymerization pre-catalysts. The melting points, crystallinity and molecular weights of the products can also be modified accordingly. The binuclear complex Ti2L1 with methylthio sidearm showed higher capability for comonomer incorporation and produced polymers with higher branching degree and much higher molecular weight compared with the mononuclear analogue.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 699 ◽  
Author(s):  
Ying Liu ◽  
Liutao Yang ◽  
Chunping Ma ◽  
Yingzhe Zhang

In this study, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) methods were used to study the structure, the thermal degradation kinetics, and the thermogram of sweet potato starch, respectively. The thermal decomposition kinetics of sweet potato starch was examined within different heating rates in a nitrogen atmosphere. Different models of kinetic analysis were used to calculate the activation energies using the thermogravimetric data of the thermal degradation process. The activation energies got from Kissinger, Flynn–Wall–Ozawa, and Šatava–Šesták models were 173.85, 174.87, and 174.34 kJ·mol−1, respectively. Thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR) analysis showed that the main pyrolysis products included water, carbon dioxide, and methane.


2012 ◽  
Vol 584 ◽  
pp. 8-12 ◽  
Author(s):  
Balakrishna Kolli ◽  
Sarada P. Mishra ◽  
Mukesh P. Joshi ◽  
S. Raj Mohan ◽  
T.S. Dhami ◽  
...  

Click chemistry is used for synthesizing polymers for second order NLO study. The molecular weights found by gel-permeation chromatography (GPC), were in the range of 7000-55000 g/mol. Differential scanning calorimetry shows glass transition temperature (Tg) above 120 oC. From electronic spectra order parameter of the poled films were calculated to be 0.1-0.5. The change in surface morphology after poling was checked by atomic force microscopy. By using a pulsed Nd:YAG laser (1064nm), the second harmonic generation (SHG) intensity was measured. The SHG intensity was also studied as a function of against temperature and time respectively.


2011 ◽  
Vol 181-182 ◽  
pp. 185-188
Author(s):  
Run Tao Dong ◽  
Qing Bin Xue ◽  
Ling Min Sun ◽  
Quan Xuan Zhang

A series of azobenzene containing group Poly (L-lactic acid) (PLLA) were synthesized by Ring-Opening Polymerization of L-lactide (L-LA) catalysted by Sn (Oct)2initiated by alcohol-OH containing the azobenzene chromophores. Their molecular weights were well controlled by the feed ratio as characterized by Gel Permeation Chromatography (GPC) and1H NMR Spectrometry and agreed well with theoretical values. The thermal properties and liquid crystal phases were investigated by Differential Scanning Calorimetry (DSC), polarized optical microscopy (POM) and X-ray Diffraction (XRS) measurements. Cis-trans photoisomerization behavior of the polymers in the solutions and the films were studied with UV irradiation. By the Circular Dichroism Spectroscopy (CD) characterization of the solutions and films of the polymer, the PLLA segments show huge optical rotation power in helical structure.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Dan Cheng ◽  
Xiucheng Zhang ◽  
Siyu Wang ◽  
Lihua Liu

Four-needle zinc oxide whisker (T-ZnOw) incorporated into microcrystalline cellulose/maleic anhydride grafted polypropylene/random copolymer polypropylene (MCC/PP-g-MA/rPP) composite was prepared by melt blending. 5 wt% PP-g-MA was used as a coupling agent to improve the interfacial compatibility between fillers and rPP. The effect of T-ZnOw on MCC/PP-g-MA/rPP composite was investigated by mechanical testing, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Addition of T-ZnOw enhanced the mechanical properties of composites with tensile and flexural strengths increasing by 10% and 6%, respectively. SEM studies showed an improvement in the compatibility of fracture surfaces, which was evident from the absence of gaps between fillers and rPP. Additionally, initial thermal decomposition temperature and maximum weight loss temperature of T-ZnOw/MCC/PP-g-MA/rPP composite were both higher than those of MCC/PP-g-MA/rPP composite. Thermal degradation kinetics suggested that T-ZnOw has a weak catalytic effect on MCC, resulting in the early degradation of MCC and adhesion to the surface of rPP. Because of the presence of inorganic whiskers, the remaining weight percent was more than that of other composites at the end of the reaction. Crystallization temperature of the T-ZnOw/MCC/PP-g-MA/rPP composite was almost 3~5°C higher than that of MCC/PP-g-MA/rPP composite and close to the crystallization temperature of pure rPP.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 97
Author(s):  
Tomy Muringayil Joseph ◽  
Sumi Murali Nair ◽  
Suresh Kattimuttathu Ittara ◽  
Józef T. Haponiuk ◽  
Sabu Thomas

The copolymerization of styrene (St) with a bioderived monomer, pentadecylphenyl methacrylate (PDPMA), via atom transfer radical polymerization (ATRP) was studied in this work. The copolymerization reactivity ratio was calculated using the composition data obtained from 1H NMR spectroscopy, applying Kelen-Tudos and Finemann-Ross methods. The reactivity ratio of styrene (r1 = 0.93) and PDPMA (r2 = 0.05) suggested random copolymerization of the two monomers with alternation. The copolymerization conversion increased with increasing PDPMA concentration of the feed, upto 70 wt % PDPMA, but decreased thereafter. The molecular weight determined by gel permeation chromatography was lower than the theoretical values and the polydispersity increased from 1.32 to 2.19, with increasing PDPMA content in the feed. The influence of styrene content on the glass transition and thermal decomposition behavior of the copolymers was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis, respectively. Morphological characterization by transmission electron microscopy (TEM) revealed a phase separated soft core-hard shell type structure. The complex viscosity and adhesion properties like peel strength and lap shear strength of the copolymer on different substrates increased with increasing styrene content.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Yewei Xu ◽  
Fanghua Zhu ◽  
Liqin Xie ◽  
Junxiao Yang ◽  
Lin Zhang ◽  
...  

AbstractRadical copolymerization of 4-vinylbenzocyclobutene (VBCB) with styrene (St) afforded the copolymer (4-vinylbenzocyclobutene-co-styrene) (VBCBSt). Reaction of VBCB-St and divinyl tetramethyl disiloxane-bisbenzocyclobutene (DVSBCB) gave the oligomer (VBCB-St-DVSBCB), which was subsequently subjected to the cure reaction. The structures of VBCB-St and oligomer (VBCB-St- DVSBCB) were characterized by FTIR and 1H NMR, which are in agreement with the proposed structures. Molecular weights of the synthesized polymers were estimated by gel permeation chromatography (GPC). Differential scanning calorimetry (DSC) showed that VBCB-St exhibited glass transition temperature (Tg > 95 °C) however it is not the case for the oligomers (VBCB-St-DVSBCB). TG measurements indicated that the polymers had the good thermal stability with decomposition temperatures (TD > 370 °C). The polymer resin possessed good film planarization in the AFM images and the process of oligomer curing on a wafer without fusion and flow. These results indicated that the oligomer (VBCB-St- DVSBCB) is a promising film material with a relatively low cost.


2015 ◽  
Vol 1765 ◽  
pp. 133-138
Author(s):  
Flores V. Daniela ◽  
Larios L. Leticia

ABSTRACTThree methacrylic polymers bearing (phenylene)azobenzene moieties in the side-chain were synthesized via free-radical polymerization of monomer (E)-6-(4-((3’-cyano-4’-(hexyloxy) -[1,1’- biphenyl]-4-yl) diazenyl) phenoxy) hexyl methacrylate using 1, 5 and 10 mol% of 1,1’-azobis(cyclohexanecarbonitrile) (ABCN) as initiator. The chemical structures of monomer and polymers were confirmed by 1H NMR and FT-IR spectroscopies. Analysis by gel permeation chromatography (GPC) showed average molecular weights (Mw) of 1.0x105, 7.3x104, and 4.5x104 g/mol for polymers P1%, P5%, and P10%, respectively. These results indicate a clear dependence of the Mw on the amount of initiator used; the higher the amount of ABCN, the lowest the molecular mass. Thermotropic liquid-crystalline properties were analyzed by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). All polymers showed a liquid-crystalline behavior over a wide range of temperatures (>100°C) displaying smectic type mesophases. A small shift (around 8°C) upwards in the clearing temperature was observed on increasing the molecular masses from P10% to P1%. The trans-cis photo-isomerization of polymers was studied in solution and in thin films by UV-Vis spectroscopy. High cis-isomer contents in solution (>90%) were reached in relative short irradiation times.


Sign in / Sign up

Export Citation Format

Share Document