scholarly journals Multiplex Polymerase Chain Reaction Assay for Identification of Enterotoxigenic Escherichia Coli Strains

2001 ◽  
Vol 13 (4) ◽  
pp. 308-311 ◽  
Author(s):  
Jacek Osek

A multiplex polymerase chain reaction (PCR) system was developed for identification of enterotoxigenic Escherichia coli (ETEC) strains and to differentiate them from other gram negative enteric bacteria. This test simultaneously amplifies heat-labile (LTI) and heat-stable (STI and STII) toxin sequences and the E. coli-specific universal stress protein ( uspA). The specificity of the method was validated by single PCR tests performed with the reference E. coli and non- E. coli strains and with bacteria isolated from pig feces. The multiplex PCR allowed the rapid and specific identification of enterotoxin-positive E. coli and may be used as a method for direct determination of ETEC and to differentiate them from other E. coli and gram-negative enteric isolates.

Author(s):  
Hesam Alizade ◽  
Hamid Sharifi ◽  
Zahedeh Naderi ◽  
Reza Ghanbarpour ◽  
Mehdi Bamorovat ◽  
...  

This study was conducted on patients with thalassemia and HIV-infected patients to determine the frequency of diarrheagenic Escherichia coli in Kerman, Iran. We analyzed 68 and 49 E coli isolates isolated from healthy fecal samples of patients with thalassemia and HIV-infected patients, respectively. The E coli isolates were studied using a multiplex polymerase chain reaction to identify the enterotoxigenic E coli (ETEC), enterohemorrhagic E coli (EHEC), and enteropathogenic E coli (EPEC) groups. Statistical analysis was carried out to determine the correlation of diarrheagenic E coli between HIV-infected patients and patients with thalassemia using Stata 11.2 software. The frequency of having at least 1 diarrheagenic E coli was more common in patients with thalassemia (67.64%) than in HIV-infected patients (57.14%; P = .25), including ETEC (67.64% versus 57.14%), EHEC (33.82% versus 26.53%), and EPEC (19.11% versus 16.32%). The results of this study indicate that ETEC, EHEC, and EPEC pathotypes are widespread among diarrheagenic E coli isolates in patients with thalassemia and HIV-infected patients.


2000 ◽  
Vol 63 (8) ◽  
pp. 1032-1037 ◽  
Author(s):  
PINA M. FRATAMICO ◽  
LORI K. BAGI ◽  
TIZIANA PEPE

A multiplex polymerase chain reaction (PCR) assay was designed to simplify detection of Escherichia coli O157:H7 and to identify the H serogroup and the type of Shiga toxin produced by this bacterium. Primers for a plasmid-encoded hemolysin gene (hly933), and chromosomal flagella (fliCh7; flagellar structural gene of H7 serogroup), Shiga toxins (stx1, stx2), and attaching and effacing (eaeA) genes were used in a multiplex PCR for coamplification of the corresponding DNA sequences from enterohemorrhagic E. coli (EHEC) O157:H7. Enrichment cultures of ground beef, blue cheese, mussels, alfalfa sprouts, and bovine feces, artificially inoculated with various levels of E. coli O157:H7 strain 933, were subjected to a simple DNA extraction step prior to the PCR, and the resulting amplification products were analyzed by agarose gel electrophoresis. Sensitivity of the assay was ≤1 CFU/g of food or bovine feces (initial inoculum level), and results could be obtained within 24 h. Similar detection levels were obtained with ground beef samples that underwent enrichment culturing immediately after inoculation and samples that were frozen or refrigerated prior to enrichment. The multiplex PCR facilitates detection of E. coli O157:H7 and can reduce the time required for confirmation of isolates by up to 3 to 4 days.


1998 ◽  
Vol 61 (8) ◽  
pp. 934-938 ◽  
Author(s):  
PINA M. FRATAMICO ◽  
TERENCE P. STROBAUGH

In commercial beef processing, carcasses are customarily washed with water to remove physical and microbial contamination. Assaying the water that is shed from the carcasses after washing is a convenient method to determine whether the carcass is contaminated with Escherichia coli O157:H7 or other bacterial pathogens. E. coli O157:H7 was inoculated into carcass wash water at various levels and the bacteria were then concentrated by filtration. After collection of bacteria in the filter units, the nylon membranes were cut out and placed in tubes containing growth medium, and the tubes were mixed vigorously to dislodge the bacteria from the membranes. Prior to enrichment, samples were removed for testing by a multiplex polymerase chain reaction (PCR) and a direct immunofluorescent filter technique (DIFT). The remaining samples were subjected to 4-h enrichment culturing at 37°C, after which aliquots were removed for testing by multiplex PCR, DIFT, and an enzyme-linked immunosorbent assay (ELISA). Following 4-h enrichment culturing, E. coli O157:H7 was detected in wash water samples initially inoculated with ca. 100, 0.1, and 1 CFU/ml by ELISA, DIFT, and multiplex PCR, respectively. Testing of the wash water using the ELISA and the DIFT can be accomplished in less than 8 h. On the basis of these results, assaying carcass wash water by ELISA, DIFT, or multiplex PCR can be useful for detection of E. coli O157:H7 beef carcass contamination and can potentially be employed to identify carcasses for further processing to inactivate the organism.


2003 ◽  
Vol 66 (1) ◽  
pp. 18-24 ◽  
Author(s):  
MICHAEL A. GRANT

Multiplex polymerase chain reaction (PCR) analysis was used to detect two genes encoding Shiga-like toxins (stx1 and stx2) and a universal Escherichia coli gene (gadA/B) in fresh produce spiked with E. coli O157:H7. Current U.S. Food and Drug Administration procedures for the analysis of fresh produce include the use of the rinsate from an initial rinse for the analysis of several potential pathogens, including E. coli O157:H7. In this study, several procedures were evaluated for their ability to increase the sensitivity of PCR analysis of rinsates from 15 types of produce. The procedures evaluated included the preliminary clarification and concentration of templates by centrifugation and the treatment of templates with compounds reported to facilitate nucleic acid amplification, including polyvinlypolypyrrolidone (PVPP), nonfat dry milk (NFDM), and InstaGene. The preliminary concentration of rinsates resulted in moderate improvements in detection sensitivity. The use of PVPP-treated templates in PCR reaction mixtures did not further improve sensitivity, but the inclusion of NFDM-treated templates increased sensitivity by an order of magnitude for 12 rinsates. The incorporation of InstaGene also improved the detection capability of the analysis; this procedure yielded the strongest gel bands for eight rinsates. However, for four other rinsates, the use of this reagent decreased sensitivity; these four rinsates were those for the produce varieties with the largest surface areas and were the most turbid rinsates. The use of facilitating compounds to block PCR inhibition may enable an analysis for Shiga toxin–producing E. coli in fresh produce to be completed in 1 to 2 days, rather than the 5 days required for current methods.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8944
Author(s):  
Yaoqiang Shi ◽  
Chao Li ◽  
Guangying Yang ◽  
Xueshan Xia ◽  
Xiaoqin Mao ◽  
...  

Background Antibiotics are highly effective drugs used in the treatment of infectious diseases. Aminoglycoside antibiotics are one of the most common antibiotics in the treatment of bacterial infections. However, the development of drug resistance against those medicines is becoming a serious concern. Aim This study aimed to develop an efficient, rapid, accurate, and sensitive detection method that is applicable for routine clinical use. Methods Escherichia coli was used as a model organism to develop a rapid, accurate, and reliable multiplex polymerase chain reaction (M-PCR) for the detection of four aminoglycoside modifying enzyme (AME) resistance genes Aac(6′)-Ib, Aac(3)-II, Ant(3″)-Ia, and Aph(3′)-Ia. M-PCR was used to detect the distribution of AME resistance genes in 237 clinical strains of E. coli. The results were verified by simplex polymerase chain reaction (S-PCR). Results Results of M-PCR and S-PCR showed that the detection rates of Aac(6′)-Ib, Aac(3)-II, Ant(3″)-Ia, and Aph(3′)-Ia were 32.7%, 59.2%, 23.5%, and 16.8%, respectively, in 237 clinical strains of E. coli. Compared with the traditional methods for detection and identification, the rapid and accurate M-PCR detection method was established to detect AME drug resistance genes. This technique can be used for the clinical detection as well as the surveillance and monitoring of the spread of those specific antibiotic resistance genes.


2019 ◽  
Vol 19 (3) ◽  
pp. 322-326 ◽  
Author(s):  
Hassan Valadbeigi ◽  
Elham Esmaeeli ◽  
Sobhan Ghafourian ◽  
Abbas Maleki ◽  
Nourkhoda Sadeghifard

Introduction: The aim of the current study was to investigate the prevalence of virulence genes in uropathogenic Escherichia coli (UPEC) isolates in Ilam. Materials and Methods: For this purpose, a total of 80 UPEC isolates were collected for patients with UTIs during a 6 months period. The multiplex polymerase chain reaction (multiplex PCR) was used to detect the papEF, fimH, iucD, hlyA, fyuA, and ompT genes. Results: The prevalence of fimH, papEF, iucD, fyuA, hlyA, hlyA, and ompT genes were 87.5%, 47.5%, 60%, 67.5%, 27.5%, 47.5% and 71.2%, respectively. Among all of the isolates, 27 profiles were obtained. Conclusion: Our findings demonstrated that the most prevalence was found for fimH, and different distribution of virulence genes suggested different ability of pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document