Modelling the radially polarised annular stator of a piezoelectric travelling wave ultrasonic motor based on the shear effect

2019 ◽  
Vol 30 (8) ◽  
pp. 1225-1238 ◽  
Author(s):  
Ana Costa Conrado

This article deals with the mathematical–analytical model of a radially polarised stator, part of a piezoelectric travelling wave ultrasonic motor based on the shear effect. The stator is treated with a Reissner–Mindlin plate model containing piezoelectric terms. The so-obtained mathematical description of the disc stator takes into account its geometry, kinematics and characteristics that influence efficiency and torque. Rayleigh–Ritz discretisation is used to obtain eigenfrequencies and eigenmodes of the stator plate. In addition, there are often teeth over the contact surface of ring-shaped stators to minimise the friction losses during operation of the motor, and possible vibration modes are compared with respect to the deflexion of the contact points. In the laboratory, measured eigenfrequencies of the free vibrations of the plate corroborate the numerical method. Particularly, the generation of travelling waves requests the excitation of two degenerated vibration modes in a certain electrode configuration. A voltage inverter was designed for this purpose.

2014 ◽  
Vol 543-547 ◽  
pp. 1537-1541
Author(s):  
Xiang Yu Zhou ◽  
Wei Shan Chen ◽  
Jun Kao Liu

A new thin cross type rotary ultrasonic motor has been proposed for further study of this type motors characteristics. As a stator, eight semi-circular piezoelectric ceramics were attached on the upper and bottom sides of a thin hollow cross brass plate. The stator was excited by two sinusoidal voltages with a phase difference of 90° and elliptical trajectories were generated at the contact points to drive a shaft rotor. The driving principle of the motor was illustrated by degenerating two orthogonal in plane vibration modes. Based on FEM analysis, the vibration shapes and frequencies of operation modes were simulated and the relationships between the maximum displacements of the contact points and various motor parameters were obtained. A prototype was fabricated and characteristics of the motor were measured. The relationship among rotation speed, pre-pressure and voltage are no-linear. The maximum rotation speed with no load was 22.9 rpm. The merits and shortcomings of the thin cross type rotary ultrasonic motor were discussed.


2014 ◽  
Vol 216 ◽  
pp. 151-156 ◽  
Author(s):  
Liviu Bereteu ◽  
Mircea Vodǎ ◽  
Gheorghe Drăgănescu

The aim of this work was to determine by vibration tests the longitudinal elastic modulus and shear modulus of welded joints by flux cored arc welding. These two material properties are characteristic elastic constants of tensile stress respectively torsion stress and can be determined by several non-destructive methods. One of the latest non-destructive experimental techniques in this field is based on the analysis of the vibratory signal response from the welded sample. An algorithm based on Pronys series method is used for processing the acquired signal due to sample response of free vibrations. By the means of Finite Element Method (FEM), the natural frequencies and modes shapes of the same specimen of carbon steel were determined. These results help to interpret experimental measurements and the vibration modes identification, and Youngs modulus and shear modulus determination.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 853
Author(s):  
Dongmei Xu ◽  
Wenzhong Yang ◽  
Xuhui Zhang ◽  
Simiao Yu

An ultrasonic motor as a kind of smart material drive actuator has potential in robots, aerocraft, medical operations, etc. The size of the ultrasonic motor and complex circuit limits the further application of ultrasonic motors. In this paper, a single-phase driven ultrasonic motor using Bending-Bending vibrations is proposed, which has advantages in structure miniaturization and circuit simplification. Hybrid bending vibration modes were used, which were excited by only single-phase voltage. The working principle based on an oblique line trajectory is illustrated. The working bending vibration modes and resonance frequencies of the bending vibration modes were calculated by the finite element method to verify the feasibility of the proposed ultrasonic motor. Additionally, the output performance was evaluated by experiment. This paper provides a single-phase driven ultrasonic motor using Bending-Bending vibrations, which has advantages in structure miniaturization and circuit simplification.


Author(s):  
C-S Kim ◽  
C-W Lee

A modal control scheme for rotating disc systems is developed based upon the finite-dimensional sub-system model including a few lower backward travelling waves important to the disc response. For the single discrete sensor and actuator system, a polynomial equation, which determines the closed-loop system poles, is derived and the spillover effect is analysed, providing a sufficient condition for stability. Finally, simulation studies are performed to show the effectiveness of the travelling wave control scheme proposed.


2015 ◽  
Vol 56 (3) ◽  
pp. 233-247 ◽  
Author(s):  
RHYS A. PAUL ◽  
LAWRENCE K. FORBES

We consider a two-step Sal’nikov reaction scheme occurring within a compressible viscous gas. The first step of the reaction may be either endothermic or exothermic, while the second step is strictly exothermic. Energy may also be lost from the system due to Newtonian cooling. An asymptotic solution for temperature perturbations of small amplitude is presented using the methods of strained coordinates and multiple scales, and a travelling wave solution with a sech-squared profile is derived. The method of lines is then used to approximate the full system with a set of ordinary differential equations, which are integrated numerically to track accurately the evolution of the reaction front. This numerical method is used to verify the asymptotic solution and investigate behaviours under different conditions. Using this method, temperature waves progressing as pulsatile fronts are detected at appropriate parameter values.


2018 ◽  
Vol 856 ◽  
pp. 984-1013 ◽  
Author(s):  
K. L. Oliveras ◽  
C. W. Curtis

In this work, we study the nonlinear travelling waves in density stratified fluids with piecewise-linear shear currents. Beginning with the formulation of the water-wave problem due to Ablowitz et al. (J. Fluid Mech., vol. 562, 2006, pp. 313–343), we extend the work of Ashton & Fokas (J. Fluid Mech., vol. 689, 2011, pp. 129–148) and Haut & Ablowitz (J. Fluid Mech., vol. 631, 2009, pp. 375–396) to examine the interface between two fluids of differing densities and varying linear shear. We derive a systems of equations depending only on variables at the interface, and numerically solve for periodic travelling wave solutions using numerical continuation. Here, we consider only branches which bifurcate from solutions where there is no slip in the tangential velocity at the interface for the trivial flow. The spectral stability of these solutions is then determined using a numerical Fourier–Floquet technique. We find that the strength of the linear shear in each fluid impacts the stability of the corresponding travelling wave solutions. Specifically, opposing shears may amplify or suppress instabilities.


2010 ◽  
Vol 375 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R. Ansari ◽  
S. Sahmani ◽  
B. Arash

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Aiyong Chen ◽  
Yong Ding ◽  
Wentao Huang

The qualitative theory of differential equations is applied to the osmosis K(2, 2) equation. The parametric conditions of existence of the smooth periodic travelling wave solutions are given. We show that the solution map is not uniformly continuous by using the theory of Himonas and Misiolek. The proof relies on a construction of smooth periodic travelling waves with small amplitude.


Sign in / Sign up

Export Citation Format

Share Document