scholarly journals Nonlinear finite element system simulation of piezoelectric vibration-based energy harvesters

Author(s):  
Andreas Hegendörfer ◽  
Paul Steinmann ◽  
Julia Mergheim

Piezoelectric vibration-based energy harvesters consist of an electromechanical structure and an electric circuitry, influencing each other. We propose a novel approach that allows a finite element based system simulation of nonlinear electromechanical structures coupled to nonlinear electric circuitries. In the finite element simulation the influence of the electric circuit on the electromechanical structure is considered via the vector of external forces, using an implicit time integration scheme. To demonstrate the applicability of the new simulation method an active power circuit is considered. Several examples of piezoelectric vibration-based energy harvesters, connected to standard or synchronized switch harvesting on inductor (SSHI) circuits, showing linear or nonlinear mechanical behavior, are studied to validate the proposed simulation method against numerical results reported in the literature. The advocated method allows for consistent and efficient simulations of complete nonlinear energy harvesters using only one software tool.

1998 ◽  
Vol 120 (1) ◽  
pp. 24-34 ◽  
Author(s):  
C. Fu ◽  
D. L. McDowell ◽  
I. C. Ume

A finite element procedure using a semi-implicit time-integration scheme has been developed for a cyclic thermoviscoplastic constitutive model for Pb-Sn solder and OFHC copper, two common metallic constituents in electronic packaging applications. The scheme has been implemented in the commercial finite element (FE) code ABAQUS (1995) via the user-defined material subroutine, UMAT. Several single-element simulations are conducted to compare with previous test results, which include monotonic tensile tests, creep tests, and a two-step ratchetting test for 62Sn36Pb2Ag solder; a nonproportional axial-torsional test and a thermomechanical fatigue (TMF) test for OFHC copper. At the constitutive level, we also provide an adaptive time stepping algorithm, which can be used to improve the overall computation efficiency and accuracy especially in large-scale FE analyses. We also compare the computational efforts of fully backward Euler and the proposed methods. The implementation of the FE procedure provides a guideline to apply user-defined material constitutive relations in FE analyses and to perform more sophisticated thermomechanical simulations. Such work can facilitate enhanced understanding thermomechanical reliability issue of solder and copper interconnects in electronic packaging applications.


Author(s):  
X. Q. Wang ◽  
Yabin Liao ◽  
Marc P. Mignolet

Abstract Quantifying effects of system-wide uncertainties (i.e., affecting structural, piezoelectric, and/or electrical components) in the analysis and design of piezoelectric vibration energy harvesters has recently been emphasized. The present investigation proposes first a general methodology to model these uncertainties within a finite element model of the harvester obtained from an existing finite element software. Needed from this software are the matrices relating to the structural properties (mass, stiffness), the piezoelectric capacitance matrix, as well as the structural-piezoelectric coupling terms of the mean harvester. The thermal analogy linking piezoelectric and temperature effects is also extended to permit the use of finite element software that do not have piezoelectric elements but include thermal effects on structures. The approach is applied to a beam energy harvester. Both weak and strong coupling configurations are considered and various scenarios of load resistance tuning are considered, i.e., based on the mean model, for each harvester sample, or based on the entire set of harvesters. The uncertainty is shown to have significant effects in all cases even at a relatively low level and these effects are dominated by the uncertainty on the structure vs. the one on the piezoelectric component. The strongly coupled configuration is shown to be better as it is less sensitive to the uncertainty and its variability in power output can be significantly reduced by the adaptive optimization, and the harvested power can even be boosted if the target excitation frequency falls into the power saturation band of the system.


2017 ◽  
Vol 29 (7) ◽  
pp. 1333-1347 ◽  
Author(s):  
Dominik Gedeon ◽  
Stefan J Rupitsch

We present a system simulation approach for piezoelectric vibration energy harvesting devices. Accurate modeling of the electromechanical structure is achieved by the finite element method. For consideration of power electronic circuits as a means of energy extraction, the finite element model is iteratively coupled to electric circuits via Simulink. The high computational cost of conventional finite element calculations is overcome by a specialized modal truncation method for general linear piezoelectric structures. In doing so, the simulation approach allows efficient prediction of mechanical quantities (e.g. displacements, stresses) as well as electric potentials in the continuum under the influence of arbitrary electrical circuits. Several examples are studied to validate the truncation approach against analytical models and full finite element models. The applicability of the method is demonstrated for a piezoelectric vibration energy harvester in conjunction with a power electronic circuit.


2012 ◽  
Vol 77 ◽  
pp. 11-28
Author(s):  
Marcelo J. Dapino ◽  
Suryarghya Chakrabarti

This work presents a unified approach to model three dimensional magnetostrictive transducers. Generalized procedures are developed for incorporating nonlinear coupled constitutive behavior of magnetostrictive materials into an electro-magneto-mechanical finite element modeling framework. The finite element model is based on weak forms of Maxwell's equations for electromagnetics and Navier's equations for mechanical systems. An implicit time integration scheme is implemented to obtain nonlinear dynamic system responses. The model is implemented into a finite element (FE) solver and applied to two case studies, a Galfenol unimorph actuator and a magnetohydraulic Terfenol-D actuator for active engine mounts. Model results are compared with experiments, and parametric analyses are conducted which provide guidelines for optimization of actuator design.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 162
Author(s):  
A.A. Jameei ◽  
S. Pietruszczak

This paper provides a mathematical description of hydromechanical coupling associated with propagation of localized damage. The framework incorporates an embedded discontinuity approach and addresses the assessment of both hydraulic and mechanical properties in the region intercepted by a fracture. Within this approach, an internal length scale parameter is explicitly employed in the definition of equivalent permeability as well as the tangential stiffness operators. The effect of the progressive evolution of damage on the hydro-mechanical coupling is examined and an evolution law is derived governing the variation of equivalent permeability with the continuing deformation. The framework is verified by a numerical study involving 3D simulation of an axial splitting test carried out on a saturated sample under displacement and fluid pressure-controlled conditions. The finite element analysis incorporates the Polynomial-Pressure-Projection (PPP) stabilization technique and a fully implicit time integration scheme.


Author(s):  
Balakrishna Adhikari ◽  
BN Singh

In this paper, a finite element study is conducted using the Green Lagrange strain field based on vonKarman assumptions for the geometric nonlinear static and dynamic response of the laminated functionally graded CNT reinforced (FG-CNTRC) composite plate. The governing equations for determining the nonlinear static and dynamic behavior of the FG-CNTRC plate are derived using the Lagrange equation of motion based on Reddy's higher order theory. Using the direct iteration technique, the nonlinear eigenvalues for analyzing the free vibration response are obtained and the nonlinear dynamic responses of the FG-CNTRC plate are encapsulated based on the nonlinear Newmark integration scheme. The impact of the amplitude of vibration on mode switching phenomena and the consequence of the duration of the pulse on the free vibration regime of the plate are outlined. Also, the effect of time dependent loads is studied on the normal stresses of the plate. Furthermore, the impact on the nonlinear static and dynamic response of the laminated FG-CNTRC plate of various parameters such as span-thickness ratio (b/h ratio), aspect ratio (a/b ratio), different edge constraints, CNT fiber gradation, etc. are also studied.


Sign in / Sign up

Export Citation Format

Share Document