scholarly journals On Hydromechanical Interaction during Propagation of Localized Damage in Rocks

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 162
Author(s):  
A.A. Jameei ◽  
S. Pietruszczak

This paper provides a mathematical description of hydromechanical coupling associated with propagation of localized damage. The framework incorporates an embedded discontinuity approach and addresses the assessment of both hydraulic and mechanical properties in the region intercepted by a fracture. Within this approach, an internal length scale parameter is explicitly employed in the definition of equivalent permeability as well as the tangential stiffness operators. The effect of the progressive evolution of damage on the hydro-mechanical coupling is examined and an evolution law is derived governing the variation of equivalent permeability with the continuing deformation. The framework is verified by a numerical study involving 3D simulation of an axial splitting test carried out on a saturated sample under displacement and fluid pressure-controlled conditions. The finite element analysis incorporates the Polynomial-Pressure-Projection (PPP) stabilization technique and a fully implicit time integration scheme.

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Kaoutar BAHOUM

The principal rule for the stuffing-box packings is to ensure the stem valve sealing. The behavior of these systems is affected by the operating conditions, which are the gland axial stress, the temperature, and the fluid pressure, as well as the mechanical and geometrical properties of the various components. In this paper, a numerical study using finite element method is presented to evaluate the radial contact stresses, the axial stresses, and the lateral pressure coefficients in a stuffing box system under the tightening gland load and the temperature field.


Symmetry ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 282 ◽  
Author(s):  
Michał Szymczyk ◽  
Marcin Nowak ◽  
Wojciech Sumelka

The fractional viscoplasticity (FV) concept combines the Perzyna type viscoplastic model and fractional calculus. This formulation includes: (i) rate-dependence; (ii) plastic anisotropy; (iii) non-normality; (iv) directional viscosity; (v) implicit/time non-locality; and (vi) explicit/stress-fractional non-locality. This paper presents a comprehensive analysis of the above mentioned FV properties, together with a detailed discussion on a general 3D numerical implementation for the explicit time integration scheme.


2019 ◽  
Vol 13 (3) ◽  
pp. 5334-5346
Author(s):  
M. N. Nguyen ◽  
L. Q. Nguyen ◽  
H. M. Chu ◽  
H. N. Vu

In this paper, we report on a SOI-based comb capacitive-type accelerometer that senses acceleration in two lateral directions. The structure of the accelerometer was designed using a proof mass connected by four folded-beam springs, which are compliant to inertial displacement causing by attached acceleration in the two lateral directions. At the same time, the folded-beam springs enabled to suppress cross-talk causing by mechanical coupling from parasitic vibration modes. The differential capacitor sense structure was employed to eliminate common mode effects. The design of gap between comb fingers was also analyzed to find an optimally sensing comb electrode structure. The design of the accelerometer was carried out using the finite element analysis. The fabrication of the device was based on SOI-micromachining. The characteristics of the accelerometer have been investigated by a fully differential capacitive bridge interface using a sub-fF switched-capacitor integrator circuit. The sensitivities of the accelerometer in the two lateral directions were determined to be 6 and 5.5 fF/g, respectively. The cross-axis sensitivities of the accelerometer were less than 5%, which shows that the accelerometer can be used for measuring precisely acceleration in the two lateral directions. The accelerometer operates linearly in the range of investigated acceleration from 0 to 4g. The proposed accelerometer is expected for low-g applications.


2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


2021 ◽  
pp. 136943322110015
Author(s):  
Rana Al-Dujele ◽  
Katherine Ann Cashell

This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial tension. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4773
Author(s):  
Jianyu Li ◽  
Hong Li ◽  
Zheming Zhu ◽  
Ye Tao ◽  
Chun’an Tang

Geothermal power is being regarded as depending on techniques derived from hydrocarbon production in worldwide current strategy. However, it has artificially been developed far less than its natural potentials due to technical restrictions. This paper introduces the Enhanced Geothermal System based on Excavation (EGS-E), which is an innovative scheme of geothermal energy extraction. Then, based on cohesion-weakening-friction-strengthening model (CWFS) and literature investigation of granite test at high temperature, the initiation, propagation of excavation damaged zones (EDZs) under unloading and the EDZs scale in EGS-E closed to hydrostatic pressure state is studied. Finally, we have a discussion about the further evolution of surrounding rock stress and EDZs during ventilation is studied by thermal-mechanical coupling. The results show that the influence of high temperature damage on the mechanical parameters of granite should be considered; Lateral pressure coefficient affects the fracture morphology and scale of tunnel surrounding rock, and EDZs area is larger when the lateral pressure coefficient is 1.0 or 1.2; Ventilation of high temperature and high in-situ stress tunnel have a significant effect on the EDZs scale; Additional tensile stress is generated in the shallow of tunnel surrounding rock, and the compressive stress concentration transfers to the deep. EDZs experiences three expansion stages of slow, rapid and deceleration with cooling time, and the thermal insulation layer prolongs the slow growth stage.


Author(s):  
Hailing Yu

In ballasted concrete tie track, the tie-ballast interface can deteriorate resulting in concrete tie bottom abrasion, ballast pulverization and/or voids in tie-ballast interfaces. Tie-ballast voids toward tie ends can lead to unfavorable center binding support conditions that can result in premature concrete tie failure and possible train derailment. Direct detection of these conditions is difficult. There is a strong interest in assessing the concrete tie-ballast interface conditions indirectly using measured vertical deflections. This paper seeks to establish a link between the vertical deflection profile of a concrete tie top surface and the tie-ballast interface condition using the finite element analysis (FEA) method. The concrete tie is modeled as a concrete matrix embedded with prestressing steel strands or wires. The configurations of two commonly used concrete ties, one with 8 prestressing strands and the other with 20 prestressing wires, are employed in this study. All models are three-dimensional and symmetric about the tie center. A damaged plasticity model that can predict onset and propagation of tensile cracks is applied to the concrete material. The steel-concrete interface is homogenized and represented with a thin layer of cohesive elements sandwiched between steel and concrete elements. Strand- or wire-specific elasto-plastic bond models developed at the Volpe Center are applied to the cohesive elements to account for the interface bonding mechanisms. FE models are developed for both original and worn concrete ties, with the latter assuming hypothetical patterns of reduced cross sections resulting from abrasive interactions with the ballast. Static analyses of pretension release in these concrete ties are conducted, and vertical deflection gradients along tie lengths are calculated and shown to correspond well with the worn cross sectional patterns for a given reinforcement type. The ballast is further modeled with Extended Drucker-Prager plasticity, and hypothetical voids are applied toward the tie ends along the concrete tie-ballast interface to simulate center binding support conditions. The distance range over which the concrete tie is supported in the center is variable and yields different center binding severity. Static simulations are completed with vertical rail seat loads applied on the concrete tie-ballast assembly. The influences of various factors on the vertical deflection profile, including tie type, vertical load magnitude, center binding severity, cross sectional material loss and prestress loss, are examined based on the FEA results. The work presented in this paper demonstrates the potential of using the vertical deflection profile of concrete tie top surfaces to assess deteriorations in the tie-ballast interface. The simulation results further help to clarify minimum technical requirements on inspection technologies that measure concrete tie vertical deflection profiles.


1998 ◽  
Vol 120 (1) ◽  
pp. 24-34 ◽  
Author(s):  
C. Fu ◽  
D. L. McDowell ◽  
I. C. Ume

A finite element procedure using a semi-implicit time-integration scheme has been developed for a cyclic thermoviscoplastic constitutive model for Pb-Sn solder and OFHC copper, two common metallic constituents in electronic packaging applications. The scheme has been implemented in the commercial finite element (FE) code ABAQUS (1995) via the user-defined material subroutine, UMAT. Several single-element simulations are conducted to compare with previous test results, which include monotonic tensile tests, creep tests, and a two-step ratchetting test for 62Sn36Pb2Ag solder; a nonproportional axial-torsional test and a thermomechanical fatigue (TMF) test for OFHC copper. At the constitutive level, we also provide an adaptive time stepping algorithm, which can be used to improve the overall computation efficiency and accuracy especially in large-scale FE analyses. We also compare the computational efforts of fully backward Euler and the proposed methods. The implementation of the FE procedure provides a guideline to apply user-defined material constitutive relations in FE analyses and to perform more sophisticated thermomechanical simulations. Such work can facilitate enhanced understanding thermomechanical reliability issue of solder and copper interconnects in electronic packaging applications.


2014 ◽  
Vol 697 ◽  
pp. 181-186
Author(s):  
Zi Lei Wang ◽  
Tian De Qiu

The piezoelectric field and structure field of piezoelectric resonator of ultrasonic motor are intercoupling. It is difficult to obtain the solution under some circumstances because of the complex stress boundary condition and the influence of coupling effect. An electro-mechanical coupling finite-element dynamic equation is established on the basis of the Hamilton’s Principle about piezoceramic and elastomer. The equation is decoupled through the shock excitation of the piezoelectric resonator and the piezoelectricity element and material provided by finite-element analysis. As a result, an admittance curve as well as the distribution status of the nodal DOF is obtained, which provides an effective method to solve electro-mechanical coupling problems.


Sign in / Sign up

Export Citation Format

Share Document