Design and investigation of a novel magnetorheological brake with coils directly placed on side housings using a separating thin wall

Author(s):  
Ngoc Diep Nguyen ◽  
Tan Tien Nguyen ◽  
Dai Hiep Le ◽  
Quoc Hung Nguyen

This research focuses on a new design to facilitate the manufacturing and improve performance of magneto-rheological brake (MRB). In this proposed MRB, the coils are directly placed on inner part of the side housing of the MRB and separated with the working MR fluid by a thin wall. The coils are then covered by the outer part of side housing to form a closed magnetic circuit. With this configuration, the coils do not directly contact with the MRF therefore a very small MRF gap size can be archived. In addition, the coils can be assembled and disassembled in the housing without separating the inner parts of the housing out of the disc. This makes a lot of convenience in fabrication, testing and maintenance of the MRB. After a review of MRB development, configuration of the proposed MRB is presented. Braking torque of the proposed MRB is then derived based on Bingham-plastic rheological model of MRF. Based on finite element analysis, optimal design of the proposed MRB is then conducted. The results are then compared with other types of MRB to figure out the advanced performance characteristics of the proposed one. In order to validate simulated results, prototypes of the proposed MRBs are manufactured and experimental works are then conducted.

2011 ◽  
Vol 52-54 ◽  
pp. 371-377 ◽  
Author(s):  
Quoc Hung Nguyen ◽  
Jun Cheol Jeon ◽  
Seung Bok Choi

This research focuses on developing a new configuration and optimal design of magneto-rheological (MR) brake for a middle-sized motorcycle which can replace conventional drum-type brake. The proposed MR brake mechanism utilizes a hybrid concept of magnetic circuit (using both axial and radial magnetic flux) to generate braking force. In the optimization, the required braking torque, the temperature due to zero field friction of MR fluid, the mass of the brake system and all significant geometric dimensions are considered. After a brief introduction of the proposed MR brake configuration, the braking torque is derived based on Herschel-Bulkley rheological model of the MR fluid. The optimal design of the MR brake is then analyzed. An optimization procedure based on the finite element analysis (FEA) integrated with an optimization tool is used to obtain optimal geometric dimensions of the MR brake. From the results, discussions on the performance improvement of the optimized MR brake are described.


Author(s):  
Van Bien Nguyen ◽  
Hiep Dai Le ◽  
Quoc Hung Nguyen ◽  
Do Qui Duyen ◽  
Do Huu Minh Hieu ◽  
...  

Abstract In this study, a novel magnetorheological brake (MRB) with tooth-shape rotor is developed. In this new MRB, traditional cylindrical rotor is replaced by a new one with tooth-shaped rotor. The teeth on the rotor act as multiple magnetic poles of the brake. Two magnetic coils are placed on side-housings of the brake to generate a mutual magnetic field of the MRB. The inner face of each side-housing has tooth shaped features as well. These tooth shaped features interact with the rotor teeth via magnetorheological fluid (MRF) medium. By using the tooth shaped rotor, more interface area between the rotor and the working MRF can be archived, which can improve performance characteristics of the proposed MRB such as compact size, low power consumption and high torque. After an introduction of state of the art of MRB development, the schematics and working principle of the MRB with tooth-shaped rotor is proposed. The modeling of the MRB is then derived based on magnetic finite element analysis (FEA) and Bingham rheological model of MRF. Optimal design of the MRB considering mass and braking torque of the MRB is then conducted. From the optimal design result, it is shown that the mass and power consumption of the proposed MRB are significantly smaller than those of previously developed ones. In details, at high value of the maximum braking torque (100Nm), the proposed MRB mass is only around 31.3% of the mass of the thin-wall single-coil and 42.6% of the mass of the thin-wall double coil MRB. In addition, at small values of the maximum braking torque (5Nm), power consumption of the proposed MRB is only around 33% of that of the thin-wall single-coil and 45.5% of that of the thin-wall double coil MRB. Experimental works on prototypes of the proposed MRB are then performed for validation.


2009 ◽  
Vol 419-420 ◽  
pp. 225-228
Author(s):  
Gang Li ◽  
Yu Sun ◽  
Cheng Bin Du

Based on the characteristics of magneto-rheological fluid, a new type of transmission device has been developed in this paper, in which output torque can be controlled accurately by adjusting electric current. It can be applied to replace magnetic particle clutch widely used at present to achieve tension control in some small-sized winders. A structure design of prototype has been proposed. By using the Bingham plastic constitutive model, the output torque of the device has been derived. Electromagnetic finite element analysis has been employed to simulate the magnetic circuit of this magneto-rheological fluid tension control device. It is shown that this magneto-rheological fluid tension control transmission has its significant advantages comparing with traditional magnetic particle clutch. The new one can produce higher controllable torques, and may be applied widely in the future.


2013 ◽  
Vol 336-338 ◽  
pp. 953-959 ◽  
Author(s):  
Quoc Hung Nguyen ◽  
Do Xuan Phu ◽  
Joon Hee Park ◽  
Seung Bok Choi ◽  
Ok Hyun Kang

In this paper, novel configurations of a compact and high damping force engine mount featuring magnetorheological fluid (MRF) is proposed and analyzed. In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. Firstly, several configurations of the MR mount are proposed. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are then derived based on Bingham plastic behaviour of the MRF. Optimal design of the proposed MR mount is then considered. In the optimization, the objective is to find out the optimal structure of the MR mount that can generate a maximum damping force while the off-state force of the mount is constrained in such a manner that the force ratio of the mount is greater than a required value. Performance of the optimized MR mount is then evaluated based on finite element analysis and validated by experimental results.


2019 ◽  
Vol 889 ◽  
pp. 508-517
Author(s):  
Duc Thang Le ◽  
Ngoc Diep Nguyen ◽  
Duy Tuan Le ◽  
Ngoc Tuyen Nguyen ◽  
Van Vinh Pham ◽  
...  

In this research, a new type of magneto-rheological brake (MRB) is proposed for small size motorcycle. The proposed MRB consists of a rotor with multiple trapezoidal teeth acting at multiple magnetic poles of the brake. In order to generate a magnetic field for controlling braking torque, a magnetic coil is placed on each side-housing of the brake. The inner face of each side-housing also has trapezoidal shape mating with the trapezoidal teeth of the rotor via MRF layer. By applying countercurrents to the coils, a magnetic fluid is generated with some magnetic flux going across the MRF layer (MRF duct) between the rotor teeth and their mating poles on the housing. By using multiple poles with trapezoidal shape, a high braking torque of the brake is expected while the size of the brake is still kept to be compacted. After an introduction about the development of MRBs in automotive engineering, the configuration of the proposed MRB is presented and its braking torque is derived based on Bingham rheological model of MRF. The proposed MRB is then optimally designed based on finite element analysis (FEA). Its optimized MRB is then manufactured and its braking performance is experimentally investigated. The MRB is then installed in a prototype motorcycle and the field test of this prototype motorcycle integrated with the MRB is then conducted.


2014 ◽  
Vol 984-985 ◽  
pp. 634-640
Author(s):  
J. Thanikachalam ◽  
G.S. Jinu ◽  
P. Nagaraj

Magneto-rheological fluids are smart fluids displaying flow properties that can be adjusted by the introduction of magnetic fields. Conventional brakes require complex mechanical parts to dissipate energy, they are having more weight, produce less braking torque and the time of response is about 300-500 milliseconds and hence brake distance is high. A Magneto-rheological fluid brake is more efficient than conventional braking system in terms of the weight reduction, and response time. In this paper an improved MRB design is made, taking into account the temperature effects and more accurate description of the material properties as well. The proposed work is concerned with the development of a new Brake-by-wire system which employs MRF as working medium. The design procedure comprises the selection of materials for MRB, creating an analytical model for finding the braking torque produced by the MRB and Finite Element Analysis of the MRB. Finite element models are built to provide a means to analyze the performance of the magneto-rheological brake system. The formulation of these models (including the definition of the geometry, material properties, boundary conditions and meshing process, as well as necessary assumptions) are described. The results obtained with the finite element models are presented and analyzed using SolidWorks 2013®and COMSOL Multiphysics 4.3b®.


2017 ◽  
Vol 29 (5) ◽  
pp. 905-923 ◽  
Author(s):  
Peyman Yadmellat ◽  
Rajni V Patel

This article presents the frequency response analysis performed on two different geometrical configurations of magneto-rheological clutches including disk-based and drum-based configurations. For each configuration, two sub-configurations with inner coil and outer coil designs are studied. The configurations are thoroughly studied with respect to the effect of design parameters on the bandwidth of magneto-rheological clutches using finite element analysis and by considering the effect of eddy currents and the skin effect in the magnetic circuit. The N-way analysis of variance is used to study the effect of the main parameters as well as interaction between the parameters on the bandwidth. Furthermore, trade-offs between the effect of the main parameters and the torque capacity are discussed.


Author(s):  
Kerem Karakoc ◽  
Afzal Suleman ◽  
Edward J. Park

In this paper, the development of a novel electromechanical brake is presented for automotive applications. The proposed brake consists of multiple rotating disks immersed into a magnetorheological (MR) fluid, and an enclosed electromagnet. When current is applied to the electromagnet, the MR fluid solidifies as its yield stress varies as a function of the magnetic field applied by the electromagnet. This controllable yield stress produces shear friction on the rotating disks, generating the braking torque. An electromagnetic finite element analysis was performed to optimize the magnetic circuit within the MR brake and obtain its design parameters. With these parameters, a prototype MR brake was built; and the experimental results were compared to the finite element simulation results.


2018 ◽  
Vol 30 (5) ◽  
pp. 734-748 ◽  
Author(s):  
Ngoc Diep Nguyen ◽  
Thang Le-Duc ◽  
Le Dai Hiep ◽  
Quoc Hung Nguyen

In this research, a new configuration of magnetorheological fluid–based brake with multiple coils placed on each side of the brake housing (multiple side-coil magnetorheological fluid–based brake) is proposed, optimally designed, and evaluated. With this configuration, the multiple side-coil magnetorheological fluid–based brake is expected to provide higher braking torque and more compact size than the traditional magnetorheological fluid–based brake. After a brief introduction about the development of magnetorheological fluid–based brake, the configuration of multiple side-coil magnetorheological fluid–based brake is proposed. Braking torque of the proposed magnetorheological fluid–based brake is then analyzed based on the Bingham plastic rheological model of magnetorheological fluid. The optimization of the proposed multiple side-coil magnetorheological fluid–based brake, the magnetorheological fluid–based brake with one coil placed on each side of the brake housing (single side-coil magnetorheological fluid–based brake), and the conventional magnetorheological fluid–based brake is then performed considering maximum braking torque and mass of the brakes. Based on the optimal results, advanced performance characteristics of the proposed magnetorheological fluid–based brake are figured out. In addition, experimental works are conducted to validate the performance of the proposed multiple side-coil magnetorheological fluid–based brake.


2015 ◽  
Vol 37 (4) ◽  
pp. 263-273 ◽  
Author(s):  
Nguyen Quoc Hung ◽  
Nguyen Ngoc Diep ◽  
Nguyen Si Dzung

In this study a new configuration of magneto-rheological brake (MRB) with  two coils placed on each side of the brake housing is proposed, optimally  designed and evaluated. With this configuration, the MRB is expected to  provide higher braking torque, more compact size than traditional MRB. After  describing an introduction of the proposed configuration, braking torque of  the proposed MRB is analyzed based on Bingham-plastic rheological model of  magnetorheological fluid (MRF). The optimization of the proposed MRB, the  MRB with one coil placed on each side of the brake housing and the  conventional MRB is then performed considering maximum braking torque and  mass of the brakes Based on the optimal results, advanced performance  characteristics of the proposed MRB are figured out.


Sign in / Sign up

Export Citation Format

Share Document