Product Life-Oriented Development of Component Commonality and Variety

Author(s):  
Sandra Eilmus ◽  
Dieter Krause

To reach many customers and have a broad range of products at marketable prices companies aim for high commonality across product variants. Commonality is known as the sharing of components by product variants. But using the same components for different product variants can also lead to trade-offs in product function and fulfillment of customer requirements as well as in internal processes. The aim of this paper is to investigate by literature review and a case study on forklift trucks how benefits and trade-offs can be balanced according to corporate needs. Existing tools from the Integrated PKT-Approach for Developing Modular Product Families are applied and advanced in the case study. Practical examples demonstrate that commonality is a gradual property that can be given to variant components as well and that it is influenced by the modular structure and how components are handled as modules in different life phases. New product concepts with enhanced commonality are derived and evaluated by estimating the created lot size caused and code number caused costs.

2019 ◽  
Vol 27 (4) ◽  
pp. 331-346 ◽  
Author(s):  
Olivia Borgue ◽  
Massimo Panarotto ◽  
Ola Isaksson

For space manufacturers, additive manufacturing promises to dramatically reduce weight and costs by means of integral designs achieved through part consolidation. However, integrated designs hinder the ability to change and service components over time – actually increasing costs – which is instead enabled by highly modular designs. Finding the optimal trade-off between integral and modular designs in additive manufacturing is of critical importance. In this article, a product modularisation methodology is proposed for supporting such trade-offs. The methodology is based on combining function modelling with optimisation algorithms. It evaluates product design concepts with respect to product adaptability, component interface costs, manufacturing costs and cost of post-processing activities. The developed product modularisation methodology is derived from data collected through a series of workshops with industrial practitioners from three different manufacturer companies of space products. The implementation of the methodology is demonstrated in a case study featuring the redesign of a satellite antenna.


Author(s):  
Huijun Song ◽  
Deyi Xue ◽  
Yiliu Tu

This research addresses the issues to identify the optimal product design based on individual customer requirements in one-of-a-kind production (OKP). In this work, a function decomposition approach is introduced for modeling the variations of design functions, configurations, and parameters in generic OKP product families. Requirements of individual customers are modeled at two different levels: function level and technical level. Customized OKP products are created from the generic OKP product families based on customer requirements. The optimal product design is identified from feasible design candidates through optimization. An industrial case study is given to demonstrate the effectiveness of the introduced approach.


Author(s):  
Lan Jiang ◽  
Venkat Allada

Abstract This paper presents a modified Taguchi methodology to improve the robustness of modular product families against changes in customer requirements. The general research questions posed in this paper are: (1) How to effectively design a product family (PF) that is robust enough to accommodate future customer requirements? (2) How far into the future should the designers look to design a robust product family? An example of a simplified vacuum product family is used to illustrate our methodology. In the example, the customer requirements are selected as signal factors; the future changes of customer requirements are selected as noise factors; an index called the quality characteristic (QC) is set to evaluate the product vacuum family; and the module instance matrix (M) is selected as the control factor. Initially a relation between the objective function (QC) and the control factor (M) is established, and then the search space is systemically explored using the simplex method to determine the optimum M and the corresponding QC values. Next, various noise levels at different time points are introduced into the system. For each noise level, the optimal values of M and QC are computed and plotted on a QC-chart. The tunable time period of the control factor (in the example, the module matrix, M) is computed using the QC-chart. The tunable time period represents the maximum time for which a given module matrix can be used to satisfy the current and future customer needs. Finally, a robustness index is used to break up the tunable time period into suitable time periods that the designers should focus on while designing product families.


Author(s):  
David Williamsson ◽  
Ulf Sellgren

Abstract Product architecting involves conceptual system design, module identification (clustering) and product layout design. In this paper, we propose a new extended version of the previously introduced Integrated Modularization Methodology (IMM) that integrates technical complexity and business strategic concerns into product architecture clustering. The extended IMM (eIMM) adds physical interference and implementation dependent behavior into architecture clustering. The proposed method is logically verified by an industrial case, where the architecture of a presently developed battery electric truck is used as a test bench for studying if and how the product architecture DSM and eIMM approaches may enable us to identify module candidates that are reasonable trade-offs between technical complexity, business strategies and physical interferences. The case study indicates that the eIMM is able to propose a modular product architecture with reasonable module candidates from a technical complexity point of view, and without conflicting business strategies or intra-modular physical interferences.


2021 ◽  
Vol 13 (2) ◽  
pp. 211
Author(s):  
Maële Brisset ◽  
Simon Van Wynsberge ◽  
Serge Andréfouët ◽  
Claude Payri ◽  
Benoît Soulard ◽  
...  

Despite the necessary trade-offs between spatial and temporal resolution, remote sensing is an effective approach to monitor macroalgae blooms, understand their origins and anticipate their developments. Monitoring of small tropical lagoons is challenging because they require high resolutions. Since 2017, the Sentinel-2 satellites has provided new perspectives, and the feasibility of monitoring green algae blooms was investigated in this study. In the Poé-Gouaro-Déva lagoon, New Caledonia, recent Ulva blooms are the cause of significant nuisances when beaching. Spectral indices using the blue and green spectral bands were confronted with field observations of algal abundances using images concurrent with fieldwork. Depending on seabed compositions and types of correction applied to reflectance data, the spectral indices explained between 1 and 64.9% of variance. The models providing the best statistical fit were used to revisit the algal dynamics using Sentinel-2 data from January 2017 to December 2019, through two image segmentation approaches: unsupervised and supervised. The latter accurately reproduced the two algal blooms that occurred in the area in 2018. This paper demonstrates that Sentinel-2 data can be an effective source to hindcast and monitor the dynamics of green algae in shallow lagoons.


2021 ◽  
Vol 3 ◽  
Author(s):  
N.-Han Tran ◽  
Timothy Waring ◽  
Silke Atmaca ◽  
Bret A. Beheim
Keyword(s):  

Abstract


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 42
Author(s):  
Gerald Norbert Souza da Silva ◽  
Márcia Maria Guedes Alcoforado de Moraes

The development of adequate modeling at the basin level to establish public policies has an important role in managing water resources. Hydro-economic models can measure the economic effects of structural and non-structural measures, land and water management, ecosystem services and development needs. Motivated by the need of improving water allocation using economic criteria, in this study, a Spatial Decision Support System (SDSS) with a hydro-economic optimization model (HEAL system) was developed and used for the identification and analysis of an optimal economic allocation of water resources in a case study: the sub-middle basin of the São Francisco River in Brazil. The developed SDSS (HEAL system) made the economically optimum allocation available to analyze water allocation conflicts and trade-offs. With the aim of providing a tool for integrated economic-hydrological modeling, not only for researchers but also for decision-makers and stakeholders, the HEAL system can support decision-making on the design of regulatory and economic management instruments in practice. The case study results showed, for example, that the marginal benefit function obtained for inter-basin water transfer, can contribute for supporting the design of water pricing and water transfer decisions, during periods of water scarcity, for the well-being in both basins.


2019 ◽  
Vol 11 (21) ◽  
pp. 6041 ◽  
Author(s):  
Zhang ◽  
Li ◽  
Buyantuev ◽  
Bao ◽  
Zhang

Ecosystem services management should often expect to deal with non-linearities due to trade-offs and synergies between ecosystem services (ES). Therefore, it is important to analyze long-term trends in ES development and utilization to understand their responses to climate change and intensification of human activities. In this paper, the region of Uxin in Inner Mongolia, China, was chosen as a case study area to describe the spatial distribution and trends of 5 ES indicators. Changes in relationships between ES and driving forces of dynamics of ES relationships were analyzed for the period 1979–2016 using a stepwise regression. We found that: the magnitude and directions in ES relationships changed during this extended period; those changes are influenced by climate factors, land use change, technological progress, and population growth.


Sign in / Sign up

Export Citation Format

Share Document