The Midtarsal Joint Locking Mechanism

2005 ◽  
Vol 26 (12) ◽  
pp. 1074-1080 ◽  
Author(s):  
C. Brian Blackwood ◽  
Tracy J. Yuen ◽  
Bruce J. Sangeorzan ◽  
William R. Ledoux

Background: The midtarsal joint, consisting of the talonavicular and the calcaneocuboid joints, is presumed to be responsible for the foot being both flexible and rigid during different parts of the stance phase of gait. However, this mechanism has never been well quantified. This study explores the midtarsal joint locking mechanism by comparing the effect of hindfoot inversion and eversion on midfoot and forefoot mobility. Methods: Motion of the tibia, talus, calcaneus, navicular, cuboid and the first, second, and fifth metatarsals were measured in nine cadaver feet using Polhemus Fastrak® electromagnetic sensors (EST GmbH & Co. KG, Kaiserslautern, Germany). The talus was fixed to the tibia, and then the forefoot was maximally dorsiflexed, plantarflexed, inverted, and everted, with the hindfoot in maximal eversion and inversion, for a total of eight test positions. The range of motion of the individual bones between maximal forefoot dorsiflexion and plantarflexion and between maximal forefoot inversion and eversion was calculated for the hindfoot in maximal eversion and inversion. Results: For the range of motion from maximal dorsiflexion to maximal plantarflexion there was significantly increased movement of the first, second, and fifth metatarsals in the sagittal plane ( p-value = 0.003, 0.007, and 0.002, respectively) when the calcaneus was maximally everted compared to when the calcaneus was maximally inverted. No significant differences were detected for the range of motion from forefoot inversion to eversion for the two hindfoot positions. Conclusions: This study demonstrated that motion in the forefoot is influenced by hindfoot position through the midtarsal joint. Specifically, the sagittal plane range of motion of the metatarsals is increased when the hindfoot is in valgus.

2008 ◽  
Vol 32 (1) ◽  
pp. 111-126 ◽  
Author(s):  
Lexyne L. McNealy ◽  
Steven A. Gard

In able-bodied individuals, the ankle joint functions to provide shock absorption, aid in foot clearance during the swing phase, and provides a rocker mechanism during stance phase to facilitate forward progression of the body. Prosthetic ankles currently used by persons with lower limb amputations provide considerably less function than their anatomical counterparts. However, increased ankle motion in the sagittal plane may improve the gait of persons with lower limb amputations while providing a more versatile prosthesis. The primary aim of this study was to examine and quantify temporal-spatial, kinematic, and kinetic changes in the gait of four male subjects with bilateral trans-femoral amputations who walked with and without prosthetic ankle units. Two prosthesis configurations were examined: (i) Baseline with only two Seattle LightFoot2 prosthetic feet, and (ii) with the addition of Endolite Multiflex Ankle units. Data from the gait analyses were compared between prosthetic configurations and with a control group of able-bodied subjects. The amputee subjects' freely-selected walking speeds, 0.74 ± 0.19 m/s for the Baseline condition and 0.81 ± 0.15 m/s with the ankle units, were much less than that of the control subjects (1.35 ± 0.10 m/s). The amputee subjects demonstrated no difference in walking speed, step length, cadence, or ankle, knee, and hip joint moments and powers between the two prosthesis configurations. Sagittal plane ankle range of motion, however, increased by 3–8° with the addition of the prosthetic ankle units. Compared to the control group, following initial contact the amputee subjects passively increased the rate of energy storage or dissipation at the prosthetic ankle joint, actively increased the power generation at the hip, and increased the extension moment at the hip while wearing the prosthetic ankle configuration. The amputee subjects increased the power generation at their hips, possibly as compensation for the reduced rate of energy return at their prosthetic ankles. Results from subject questionnaires administered following the gait analyses revealed that the prosthetic ankle units provided more comfort during gait and did not increase the perceived effort to walk. The subjects also indicated that they preferred walking with the prosthetic ankle units compared to the Baseline configuration. The results of the study showed that the prosthetic ankle units improved sagittal plane ankle range of motion and increased the comfort and functionality of the amputee subjects’ prostheses by restoring a significant portion of the ankle rocker mechanism during stance phase. Therefore, prosthetic ankle mechanisms should be considered a worthwhile option when prostheses are prescribed for persons with trans-femoral amputations.


2014 ◽  
Vol 104 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Renan A. Resende ◽  
Sérgio T. Fonseca ◽  
Paula L. Silva ◽  
Antônio E. Pertence ◽  
Renata N. Kirkwood

Background The forefoot midsole stiffness of the shoe may affect the kinematics of the foot segments. We evaluated the effects of two different levels of forefoot midsole stiffness on the angular displacement of the forefoot and rearfoot in the three planes of motion during the stance phase of gait. Methods Thirty-six participants walked on a 10-m walkway at their self-selected speed wearing shoes having either low or high forefoot midsole stiffness. Three-dimensional kinematic data of the foot segments were obtained during the stance phase of gait using an eight-camera motion analysis system synchronized with a force platform. The dependent variables were forefoot and rearfoot total range of motion and maximum and minimum angle values in the sagittal, frontal, and transverse planes of motion. Results Reduced forefoot midsole stiffness produced significantly greater forefoot total range of motion in the sagittal plane (1.59°). The low-stiffness condition also increased the magnitude of the forefoot dorsiflexion angles (4.14°). Furthermore, the low-stiffness condition increased the magnitude of the rearfoot inversion (1.21°) and adduction (11.38°) angles and reduced the rearfoot abduction angle (12.1°). Conclusions It is likely that reduced stiffness of the forefoot midsole stretched the plantar fascia, increasing rearfoot stability during the stance phase of gait. Increased muscular contraction may also explain increases in rearfoot stability. Therefore, the integrity of the plantar fascia and ankle muscles' force and resistance should be considered when choosing a shoe with reduced or increased forefoot midsole stiffness for walking.


2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0001
Author(s):  
Collin Barber ◽  
Alex McLaren ◽  
Paulo Castaneda ◽  
Dor Shoshan

Category: Bunion, Trauma, Other Introduction/Purpose: Immobilization is required for management of acute and chronic pathologic states of the hallux metatarsophalangeal (MTP) joint. Traditionally, this was performed using physician applied custom splint or cast and achieved a high degree of immobilization. Braces and orthotics are becoming less expensive and have several advantages, such as light weight and convenience in removal. However, this may come at the expense of ability to restrict movement. We hypothesize that generic braces will provide as much immobilization as custom applied plaster splints. Methods: Healthy volunteers were instrumented with electromagnetic sensors over bony prominences of the right foot. Range of motion exercises and activities of daily living were performed without an immobilization device. The same procedure was repeated with each of three immobilization devices: a post-operative shoe, a walking boot, and a custom applied plaster splint. Position and angular data were collected to determine range of motion primarily of the hallux MTP joint. This study was approved by the hospital IRB Results: Compared to baseline, all three immobilization devices significantly reduced range of motion at the MTP joint in non- weight bearing with the ankle in dorsiflexion and plantarflexion (p<0.05). There was no significant difference detected between the devices. There was no significant difference in hallux motion during the standing exercise in any of the immobilization devices compared to baseline. During stance phase of gait, all three devices reduced range of motion at the MTP joint compared to baseline (p<0.05), though there was no statistically significant difference between devices. Conclusion: Consistent with the hypothesis, data from this study show that all both generic devices and the physician applied splint reduced range of motion compared to baseline. Unfortunately, the study was not powered enough to detect significant differences between the devices, though there was a trend towards the walking boot providing more immobilization.


2019 ◽  
Vol 101 (6) ◽  
pp. 391-398 ◽  
Author(s):  
A Agarwal ◽  
S Miller ◽  
W Hadden ◽  
L Johnston ◽  
W Wang ◽  
...  

Introduction This study is aimed to compare kinematic gait data of patients who have undergone total and unicondylar knee replacement. Materials and methods This single-surgeon retrospective cohort study evaluated 13 patients with unilateral total knee arthroplasty (TKA) and 14 unicondylar knee arthroplasty (UKA). Gait analysis was carried out using a Vicon motion analysis system. The limits of knee flexion during stance phase, at heel strike and at loading response were measured. Results The total range of motion of the UKA knees was significantly greater than the TKA knees. UKA knees exhibited significantly greater knee extension during the stance phase than the TKA knees. Unlike TKA, UKA knees demonstrated improved knee flexion during the gait cycle when compared to the contralateral non-operated knee. The hips also demonstrated near normal hip flexion in UKA patients. Predictably, UKA knees had significantly greater varus compared with TKA in the coronal plane. Spatiotemporal variables demonstrated similar walking speed and step length to aid a fair comparison between knee replacement groups. Conclusions The UKA knees moved more physiologically in the sagittal plane with a greater range of motion during gait. Despite having a stiff gait pattern, the patients undergoing TKA demonstrated a more neutral alignment in the coronal plane. Neither type of knee arthroplasty restored knee kinematics to those of the non-operated side.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 385
Author(s):  
Masoud Abdollahi ◽  
Pranav Madhav Kuber ◽  
Michael Shiraishi ◽  
Rahul Soangra ◽  
Ehsan Rashedi

Background: A stroke often bequeaths surviving patients with impaired neuromusculoskeletal systems subjecting them to increased risk of injury (e.g., due to falls) even during activities of daily living. The risk of injuries to such individuals can be related to alterations in their movement. Using inertial sensors to record the digital biomarkers during turning could reveal the relevant turning alterations. Objectives: In this study, movement alterations in stroke survivors (SS) were studied and compared to healthy individuals (HI) in the entire turning task due to its requirement of synergistic application of multiple bodily systems. Methods: The motion of 28 participants (14 SS, 14 HI) during turning was captured using a set of four Inertial Measurement Units, placed on their sternum, sacrum, and both shanks. The motion signals were segmented using the temporal and spatial segmentation of the data from the leading and trailing shanks. Several kinematic parameters, including the range of motion and angular velocity of the four body segments, turning time, the number of cycles involved in the turning task, and portion of the stance phase while turning, were extracted for each participant. Results: The results of temporal processing of the data and comparison between the SS and HI showed that SS had more cycles involved in turning, turn duration, stance phase, range of motion in flexion–extension, and lateral bending for sternum and sacrum (p-value < 0.035). However, HI exhibited larger angular velocity in flexion–extension for all four segments. The results of the spatial processing, in agreement with the prior method, showed no difference between the range of motion in flexion–extension of both shanks (p-value > 0.08). However, it revealed that the angular velocity of the shanks of leading and trailing legs in the direction of turn was more extensive in the HI (p-value < 0.01). Conclusions: The changes in upper/lower body segments of SS could be adequately identified and quantified by IMU sensors. The identified kinematic changes in SS, such as the lower flexion–extension angular velocity of the four body segments and larger lateral bending range of motion in sternum and sacrum compared to HI in turning, could be due to the lack of proper core stability and effect of turning on vestibular system of the participants. This research could facilitate the development of a targeted and efficient rehabilitation program focusing on the affected aspects of turning movement for the stroke community.


Author(s):  
Andri Setyorini ◽  
Niken Setyaningrum

Background: Elderly is the final stage of the human life cycle, that is part of the inevitable life process and will be experienced by every individual. At this stage the individual undergoes many changes both physically and mentally, especially setbacks in various functions and abilities he once had. Preliminary study in Social House Tresna Wreda Yogyakarta Budhi Luhur Units there are 16 elderly who experience physical immobilization. In the social house has done various activities for the elderly are still active, but the elderly who experienced muscle weakness is not able to follow the exercise, so it needs to do ROM (Range Of Motion) exercise.   Objective: The general purpose of this research is to know the effect of Range Of Motion (ROM) Active Assitif training to increase the range of motion of joints in elderly who experience physical immobility at Social House of Tresna Werdha Yogyakarta unit Budhi Luhur.   Methode: This study was included in the type of pre-experiment, using the One Group Pretest Posttest design in which the range of motion of the joints before (pretest) and posttest (ROM) was performed  ROM. Subjects in this study were all elderly with impaired physical mobility in Social House Tresna Wreda Yogyakarta Unit Budhi Luhur a number of 14 elderly people. Data analysis in this research use paired sample t-test statistic  Result: The result of this research shows that there is influence of ROM (Range of Motion) Active training to increase of range of motion of joints in elderly who experience physical immobility at Social House Tresna Wredha Yogyakarta Unit Budhi Luhur.  Conclusion: There is influence of ROM (Range of Motion) Active training to increase of range of motion of joints in elderly who experience physical immobility at Social House Tresna Wredha Yogyakarta Unit Budhi Luhur.


Author(s):  
Rajendra Pai N. ◽  
U. Govindaraju

Ayurveda in its principle has given importance to individualistic approach rather than generalize. Application of this examination can be clearly seem like even though two patients suffering from same disease, the treatment modality may change depending upon the results of Dashvidha Pariksha. Prakruti and Pramana both used in Dashvidha Pariksha. Both determine the health of the individual and Bala (strength) of Rogi (Patient). Ayurveda followed Swa-angula Pramana as the unit of measurement for measuring the different parts of the body which is prime step assessing patient before treatment. Sushruta and Charaka had stated different Angula Pramana of each Pratyanga (body parts). Specificity is the characteristic property of Swa-angula Pramana. This can be applicable in present era for example artificial limbs. A scientific research includes collection, compilation, analysis and lastly scrutiny of entire findings to arrive at a conclusion. Study of Pramana and its relation with Prakruti was conducted in 1000 volunteers using Prakruti Parkishan proforma with an objective of evaluation of Anguli Pramana in various Prakriti. It was observed co-relating Pramana in each Prakruti and Granthokta Pramana that there is no vast difference in measurement of head, upper limb and lower limb. The observational study shows closer relation of features with classical texts.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0013
Author(s):  
Manish Anand ◽  
Jed A. Diekfuss ◽  
Dustin R. Grooms ◽  
Alexis B. Slutsky-Ganesh ◽  
Scott Bonnette ◽  
...  

Background: Aberrant frontal and sagittal plane knee motor control biomechanics contribute to increased anterior cruciate ligament (ACL) injury risk. Emergent data further indicates alterations in brain function may underlie ACL injury high risk biomechanics and primary injury. However, technical limitations have limited our ability to assess direct linkages between maladaptive biomechanics and brain function. Hypothesis/Purpose: (1) Increased frontal plane knee range of motion would associate with altered brain activity in regions important for sensorimotor control and (2) increased sagittal plane knee motor control timing error would associate with altered activity in sensorimotor control brain regions. Methods: Eighteen female high-school basketball and volleyball players (14.7 ± 1.4 years, 169.5 ± 7 cm, 65.8 ± 20.5 kg) underwent brain functional magnetic resonance imaging (fMRI) while performing a bilateral, combined hip, knee, and ankle flexion/extension movements against resistance (i.e., leg press) Figure 1(a). The participants completed this task to a reference beat of 1.2 Hz during four movement blocks of 30 seconds each interleaved in between 5 rest blocks of 30 seconds each. Concurrent frontal and sagittal plane range of motion (ROM) kinematics were measured using an MRI-compatible single camera motion capture system. Results: Increased frontal plane ROM was associated with increased brain activity in one cluster extending over the occipital fusiform gyrus and lingual gyrus ( p = .003, z > 3.1). Increased sagittal plane motor control timing error was associated with increased brain activity in multiple clusters extending over the occipital cortex (lingual gyrus), frontal cortex, and anterior cingulate cortex ( p < .001, z > 3.1); see Figure 1 (b). Conclusion: The associations of increased knee frontal plane ROM and sagittal plane timing error with increased activity in regions that integrate visuospatial information may be indicative of an increased propensity for knee injury biomechanics that are, in part, driven by reduced spatial awareness and an inability to adequately control knee abduction motion. Increased activation in these regions during movement tasks may underlie an impaired ability to control movements (i.e., less neural efficiency), leading to compromised knee positions during more complex sports scenarios. Increased activity in regions important for cognition/attention associating with motor control timing error further indicates a neurologically inefficient motor control strategy. [Figure: see text]


Author(s):  
Suvro Sankha Datta ◽  
Dibyendu De ◽  
Nadeem Afroz Muslim

AbstractHigh on-treatment platelet reactivity (HPR) with P2Y12 receptor antagonists in patients treated with dual antiplatelet therapy (DAPT) is strongly associated with adverse ischemic events after percutaneous coronary intervention (PCI). This prospective study was conducted to assess individual platelet response and HPR to antiplatelet medications in post-PCI cases by thromboelastography platelet mapping (TEG-PM). Total 82 patients who were on aspirin and on either clopidogrel, prasugrel, or ticagrelor were evaluated. The percentage of platelet inhibition to arachidonic acid (AA) and adenosine disdiphosphate (ADP) was calculated by [100-{(MA ADP/AA–MA Fibrin) / (MA Thrombin–MA Fibrin) × 100}], taking 50% response as cut-off for HPR. HPR to clopidogrel and prasugrel was 14.29 and 12.5%, respectively. No HPR was detected to aspirin and ticagrelor. The mean percentage of platelet inhibition was significantly higher in patients with ticagrelor 82.99, 95% confidence interval (CI) of [77.3, 88.7] as compared with clopidogrel 72.21, 95% CI of [65.3, 79.1] and prasugrel 64.2, 95% CI of [52.5, 75.9] (p-value of 0.041 and 0.003, respectively). Aspirin along with ticagrelor is associated with a higher mean percentage of platelet inhibition, and lower HPR as compared with the usage of aspirin combined with clopidogrel or prasugrel. Additionally, it might also be concluded that TEG-PM could be used effectively to measure the individual platelet functions which would make oral antiplatelet therapy more personalized for cardiac patients.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3277
Author(s):  
Juan Luis Florenciano Restoy ◽  
Jordi Solé-Casals ◽  
Xantal Borràs-Boix

The objectives of this study were to determine the amplitude of movement differences and asymmetries between feet during the stance phase and to evaluate the effects of foot orthoses (FOs) on foot kinematics in the stance phase during running. In total, 40 males were recruited (age: 43.0 ± 13.8 years, weight: 72.0 ± 5.5 kg, height: 175.5 ± 7.0 cm). Participants ran on a running treadmill at 2.5 m/s using their own footwear, with and without the FOs. Two inertial sensors fixed on the instep of each of the participant’s footwear were used. Amplitude of movement along each axis, contact time and number of steps were considered in the analysis. The results indicate that the movement in the sagittal plane is symmetric, but that it is not in the frontal and transverse planes. The right foot displayed more degrees of movement amplitude than the left foot although these differences are only significant in the abduction case. When FOs are used, a decrease in amplitude of movement in the three axes is observed, except for the dorsi-plantar flexion in the left foot and both feet combined. The contact time and the total step time show a significant increase when FOs are used, but the number of steps is not altered, suggesting that FOs do not interfere in running technique. The reduction in the amplitude of movement would indicate that FOs could be used as a preventive tool. The FOs do not influence the asymmetry of the amplitude of movement observed between feet, and this risk factor is maintained. IMU devices are useful tools to detect risk factors related to running injuries. With its use, even more personalized FOs could be manufactured.


Sign in / Sign up

Export Citation Format

Share Document