Simplified model for predicting acoustic performance of an underwater sound absorption coating

2012 ◽  
Vol 20 (3) ◽  
pp. 339-354 ◽  
Author(s):  
Tao Meng
2019 ◽  
Vol 145 ◽  
pp. 104-111 ◽  
Author(s):  
Jie Zhong ◽  
Honggang Zhao ◽  
Haibin Yang ◽  
Jianfei Yin ◽  
Jihong Wen

2021 ◽  
Vol 28 (1) ◽  
pp. 478-488
Author(s):  
Chunhe Wang ◽  
Chunhuan Guo ◽  
Fengchun Jiang

Abstract In this study, a kind of structural gradient metal hollow spheres composites (SG-MHSCs) were fabricated using two kinds of 316L stainless steel hollow spheres with different diameters and A356 aluminum through the casting method. Then the density of the SG-MHSCs was measured by the direct measurement; the microstructure of the SG-MHSCs was characterized by the Scanning Electron Microscope. Meanwhile, the acoustic performance of MHSCs was tested by the impedance tube, and the sound absorption and insulation mechanism SG-MHSCs were discussed and analyzed.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1835
Author(s):  
Heng Wang ◽  
Qibo Mao

A new type of deep subwavelength acoustic metamaterial (AMM) absorber with 100% ventilation is presented in this study. The proposed ventilation absorber consists of coiled-up half-wave resonators (HWRs) and quarter-wave resonators (QWRs). First, the sound absorption and sound transmission performances for absorbers were analyzed considering the thermal viscosity dissipation. Then, the prototype with ten HWRs and three QWRs composed of acrylic plates was manufactured based on the theoretical model. The acoustic performance of the absorber was tested in an air-filled acoustic impedance tube to determine the sound absorption and transmission loss performances. Good agreement was found between the measured and theoretically predicted results. The experimental results show that the proposed ventilation AMM absorber is able to achieve sound absorption in a range between 330 Hz and 460 Hz with a thickness of only 32 mm (about 3% of the wavelength in the air). Furthermore, the sound transmission loss can achieve 17 dB from 330 Hz to 460 Hz. The main advantage of the proposed absorber is that it can be completely ventilated in duct noise control.


2021 ◽  
Vol 7 ◽  
Author(s):  
Junyi Wang ◽  
Jiaming Hu ◽  
Yun Chen

Underwater acoustic wave absorption and control play an important role in underwater applications. Various types of underwater acoustic metamaterials have been proposed in recent years with the vigorous development of acoustic metamaterials. Compared with airborne sound, underwater sound waves have a longer wavelength and much smaller propagation loss, making them more difficult to control. In addition, given that the acoustic impedance of water is much greater than that of air, numerous conventional materials and structures are not suited to underwater use. In this paper, we propose a composite structure based on an excellent broadband low-frequency sound absorber of air using aluminum mixed with rubber. Our composite structure possesses broadband low-frequency (<1,000 Hz) sound absorption underwater, omnidirectional high sound absorption coefficient under the oblique incidence (0–75°), and pressure resistance. It has promising applications for underwater acoustic wave control and contributes to the design of underwater acoustic metamaterials.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohammad Lutful Hakim ◽  
Touhidul Alam ◽  
Mohamed S. Soliman ◽  
Norsuzlin Mohd Sahar ◽  
Mohd Hafiz Baharuddin ◽  
...  

AbstractMetamaterial absorber (MMA) is now attracting significant interest due to its attractive applications, such as thermal detection, sound absorption, detection for explosive, military radar, wavelength detector, underwater sound absorption, and various sensor applications that are the vital part of the internet of things. This article proposes a modified square split ring resonator MMA for Ku-band sensing application, where the metamaterial structure is designed on FR-4 substrate material with a dielectric constant of 4.3 and loss tangent of 0.025. Perfect absorption is realized at 14.62 GHz and 16.30 GHz frequency bands, where peak absorption is about 99.99% for both frequency bands. The proposed structure shows 70% of the average absorption bandwidth of 420 MHz (14.42–14.84 GHz) and 480 MHz (16.06–16.54 GHz). The metamaterial property of the proposed structure is investigated for transverse electromagnetic mode (TEM) and achieved negative permittivity, permeability, and refractive index property for each absorption frequency band at 0°, 45°, and 90° polarization angles. Interference theory is also investigated to verify the absorption properties. Moreover, the permittivity sensor application is investigated to verify the sensor performance of the proposed structure. Finally, a comparison with recent works is performed, which shows that the proposed MMA can be a good candidate for Ku-band perfect absorber and sensing applications.


2018 ◽  
Vol 25 (6) ◽  
pp. 1164-1178 ◽  
Author(s):  
Meng Tao ◽  
Hanfeng Ye ◽  
Xuefeng Zhao

In this work, the acoustic performance of an anechoic layer, which contains horizontally-distributed cylindrical holes, has been studied using identified viscoelastic dynamic parameters. First, the reflection coefficients of two different viscoelastic anechoic layers (one solid and the other perforated), tested in a water-filled pipe, have been used to develop the identification method for viscoelastic dynamic parameters. In the proposed method, the complex longitudinal wavenumber and the complex transverse wavenumber can be obtained by solving the characteristic equation of viscoelastic cylindrical tube. Then, simulations have been performed using COMSOL software to predict the acoustic performance of the anechoic layer. Based on the model and the identified viscoelastic parameters, the effects of different structural properties, including the radius of hole, the hole horizontal spacing, and the arrangements of holes, on the sound absorption of anechoic layer have been analyzed and discussed. Particularly, the acoustic performance of an anechoic layer under oblique incidence has also been considered.


2020 ◽  
Vol 10 (5) ◽  
pp. 1581 ◽  
Author(s):  
Lili Pan ◽  
Francesco Martellotta

Sound absorbing surfaces are being increasingly requested for the acoustical treatment of spaces, like offices and restaurants, where high aesthetic standards are requested. In these cases, perforated and micro-perforated panels may represent the ideal solution in terms of low maintenance, durability, and mechanical resistance. In addition, such a solution might be conveniently realized while using optically transparent panels, which might offer extra value, as they could ensure visual contact, while remaining neutral in terms of design. The paper first investigates the reliability of prediction models by comparison with measured data. Subsequently, while taking advantage of a parametric optimization algorithm, it is shown how to design an absorber covering three octave bands, from 500 Hz to 2 kHz, with an average sound absorption coefficient of about 0.8.


Sign in / Sign up

Export Citation Format

Share Document