scholarly journals Investigation on the acoustic properties of structural gradient 316L stainless steel hollow spheres composites

2021 ◽  
Vol 28 (1) ◽  
pp. 478-488
Author(s):  
Chunhe Wang ◽  
Chunhuan Guo ◽  
Fengchun Jiang

Abstract In this study, a kind of structural gradient metal hollow spheres composites (SG-MHSCs) were fabricated using two kinds of 316L stainless steel hollow spheres with different diameters and A356 aluminum through the casting method. Then the density of the SG-MHSCs was measured by the direct measurement; the microstructure of the SG-MHSCs was characterized by the Scanning Electron Microscope. Meanwhile, the acoustic performance of MHSCs was tested by the impedance tube, and the sound absorption and insulation mechanism SG-MHSCs were discussed and analyzed.

Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 111 ◽  
Author(s):  
Xiaojing Sun ◽  
Fengchun Jiang ◽  
Jiandong Wang

A bulk specimen and two different lattice sandwich structures composed of 316L stainless steel were fabricated via selective laser melting. This study analysed the acoustic properties, including sound insulation and sound absorption, of the three kinds of structures, which were produced via selective laser melting under the same process parameters. The results showed that the difference in the unit structures, rather than microstructural difference, was the main reason for the difference in acoustic properties between the samples. Under the same process parameters, the microstructure of the different structures had the same cell structure. However, the sound absorption properties of the lattice sandwich structures were better than those of the bulk sample in the measured frequency range of 1–6.3 kHz. The lattice sandwich structure with 2.5 × 2.5 × 2.5 mm3 unit structures exhibited excellent sound insulation properties in the frequency range of 1–5 kHz.


2016 ◽  
Vol 1133 ◽  
pp. 324-328 ◽  
Author(s):  
Muhammad Aslam ◽  
Faiz Ahmad ◽  
P.S.M. Bm-Yousoff ◽  
Khurram Altaf ◽  
Afian Omar ◽  
...  

Optimization of solvent debinding process parameters for powder injection molded 316L stainless steel (SS) has been reported in this research work. Powder gas atomized (PGA) 316L SS was blended with a multicomponent binder in Z-blade mixer at 170°C ± 5°C for 90 minutes. Feedstock was successfully injected at temperature 170 ± 5°C. Injection molded samples were immersed in n-heptane for 2h, 4h, 6h and 8h at temperatures 50°C ,55°C and 60°C to extract the soluble binder components. Scanning electron microscope (SEM) results attested that soluble binder components were completely extracted from injection molded samples at temperature 55°C after 6h.


2012 ◽  
Vol 507 ◽  
pp. 127-133 ◽  
Author(s):  
Sigrid Seuss ◽  
Tayyab Subhani ◽  
Min Yi Kang ◽  
Kenji Okudaira ◽  
Isaac E. Aguilar Ventura ◽  
...  

Electrophoretic deposition (EPD) has been successfully used to deposit composite coatings composed of polyetheretherketone (PEEK) and titanium dioxide (TiO2) nanoparticles on 316L stainless steel substrates. The suspensions of TiO2 nanoparticles and PEEK microparticles for EPD were prepared in ethanol. PEEK-TiO2 composite coatings were optimized using suspensions containing 6wt% PEEK-TiO2 in ethanol with a 3:1 ratio of PEEK to TiO2 in weight and by applying a potential difference of 30 V for 1 minute. A heat-treatment process of the optimized PEEK-TiO2 composite coatings was performed at 335°C for 30 minutes with a heating rate of 10°Cminto densify the deposits. The EPD coatings were microstructurally evaluated by scanning electron microscopy (SEM). It was demonstrated that EPD is a convenient and rapid method to fabricate PEEK/TiO2 coatings on stainless steel which are interesting for biomedical applications.


2008 ◽  
Vol 373-374 ◽  
pp. 273-276 ◽  
Author(s):  
Yu Jiang Wang ◽  
Xin Xin Ma ◽  
Guang Wei Guo

The electrodeposition of aluminum on 316L stainless steel from a molten salts based on chloride has been studied. The surface morphology of the aluminum layer has been examined through scanning electron microscope (SEM) and the structure of the aluminum layer has been analyzed by X-ray diffraction (XRD). The thickness of the deposited aluminum layer has been measured by the method of cross-section scan. It has been suggested that a white, smooth, non-porous and a high purity aluminum layer can be obtained on 316L stainless steel from the ternary chloride molten salts (AlCl3 – NaCl - KCl). And the structure of the aluminum layer was single-phase.


2017 ◽  
Vol 23 ◽  
pp. 1-12 ◽  
Author(s):  
Eiman Aghababaie ◽  
Hamid Reza Javadinejad ◽  
Mohsen Saboktakin Rizi ◽  
Marzieh Ebrahimian

In this study corrosion resistance of 316L stainless steel has been investigated in a solution containing different percentages of hypochloric solution. In order to examine the rate and mechanism of the occurrence of pitting corrosion in this steel, various corrosion tests have been used. In addition, the locale of the pitting corrosion has been examined by scanning electron microscope. Results show that the presence of chlorine ion with the increase of cathodic reaction rates cause to increase the likelihood of pitting corrosion in 316L steel.


2014 ◽  
Vol 225 ◽  
pp. 109-114
Author(s):  
Beata Śniegocka ◽  
Marek Szkodo ◽  
Jarosław Chmiel

Cavitation erosion performance of modified macroscopic internal structure 316L stainless steel was investigated. The samples processed by means of SLM method were subjected to cavitation erosion test. The scanning electron microscope Philips 30/ESEM was used to examine morphology of eroded surface.


2009 ◽  
Vol 283-286 ◽  
pp. 291-296
Author(s):  
Małgorzata Grądzka-Dahlke

The paper concerns the problem of exploitative composite materials with solid lubrication additions. The goal of the present investigation was to research the composite materials based on 316L stainless steel powders with the addition of calcium pyrophosphate (Ca2P2O7). The diffusion processes of main elements during sintering were analyzed. The influence of volume fraction of additions on structure of composites and their tribological properties were examined. Tribological tests were performed by a special tribometer, which allowed to realize research during the periodically variable motion with low velocity and variable values of pressure. The structure of materials was observed with scanning electron microscope (SEM). The intensive diffusion of main alloying elements brought the segregation of components and appearance of new phases. Changes in the microstructure, particularly the solution of phosphorus in austenite and attendance of phosphides and oxides insertions, had an effect on mechanical properties of materials. The microhardness, yield strength values as well as wear resistance increased considerably with the rise of modifier addition.


2013 ◽  
Vol 19 (S5) ◽  
pp. 83-88 ◽  
Author(s):  
Suk Hoon Kang ◽  
Hyung-Ha Jin ◽  
Jinsung Jang ◽  
Yong Seok Choi ◽  
Kyu Hwan Oh ◽  
...  

AbstractBand contrast (BC) is a qualitative measure of electron back-scattered diffraction (EBSD), which is derived from the intensity of the Kikuchi bands. The BC is dependent upon several factors including scanning electron microscope measurement parameters, EBSD camera setup, and the specimen itself (lattice defect and grain orientation). In this study, the effective factors for BC variations and the feasibility of using BC variations for the quantification of microstructure evolutions have been investigated. In addition, the effects of the lattice defect and the grain orientation on the BC variations are studied. Next, a shear-deformed microstructure of 316L stainless steel, which contains nanosized grains and a large portion of twin boundaries, is revealed by BC map and histogram. Recovery and recrystallization of shear-deformed 316L stainless steel are displayed by BC variations during isothermal annealing at 700 and 800°C, respectively. It is observed that the BC turns bright as the shear-deformed crystal structure is recovered or recrystallized.


2008 ◽  
Vol 368-372 ◽  
pp. 1838-1840
Author(s):  
Jian Xiong Ye ◽  
Xin Gang Yu ◽  
Wen Yue Bi ◽  
De Jun Li ◽  
Hong Wen Ma ◽  
...  

ZrO2-CeO2 thin film was successfully prepared on 316L stainless steel by sol-gel process and the corrosion characteristics of the substrate coated with ZrO2-CeO2 thin film were evaluated through potentiodynamic polarization curve obtained in deaerated 15% H2SO4. The results show that, with the increase of CeO2 content, the corrosion rate of 316L stainless steel substrates coated with ZrO2-CeO2 thin film decreases. The surface morphology of the coating was observed by field scanning electron microscopy and the elements in the surface of coated substrate analyzed by FEM-EDX.


Sign in / Sign up

Export Citation Format

Share Document