Vibration control of a continuous rotating shaft employing high-static low-dynamic stiffness isolators

2016 ◽  
Vol 24 (4) ◽  
pp. 760-783 ◽  
Author(s):  
Amirhassan Abbasi ◽  
SE Khadem ◽  
Saeed Bab

In this paper, the effects of high-static low-dynamic stiffness (HSLDS) isolators on the supports of a continuous rotating shaft for vibration control of a rotary system under mass eccentricity force are investigated. The rotating shaft is modeled using the Euler–Bernoulli beam theory. HSLDS isolators have a linear damping and linear and nonlinear (cubic) equivalent stiffness. Isolators are positioned on the supports of the rotating shaft, so that their forces are applied in radial directions. Equations of motion are extracted using the extended Hamilton principle and they are analyzed using the multiple scale method; then, the steady-state solutions and stability are studied. The effects of variations in linear and nonlinear parameters of the isolators on the static load bearing, resonant peak, frequency band of isolation and hardening nonlinearity are considered, in order to design an appropriate HSLDS isolator and to set its parameters in an optimal way. Investigating the effects of the cubic stiffness and damping values on bifurcations of the system, one may observe that inappropriate setting of these parameters causes strong or weak nonlinearity in the system and, consequently, HSLDS isolators perform less effectively than a linear one does. Then, the results are verified through analyzing the time history of the rotary system under study.

1992 ◽  
Vol 114 (2) ◽  
pp. 249-259 ◽  
Author(s):  
S. H. Choi ◽  
C. Pierre ◽  
A. G. Ulsoy

The equations of motion of a flexible rotating shaft have been typically derived by introducing gyroscopic moments, in an inconsistent manner, as generalized work terms in a Lagrangian formulation or as external moments in a Newtonian approach. This paper presents the consistent derivation of a set of governing differential equations describing the flexural vibration in two orthogonal planes and the torsional vibration of a straight rotating shaft with dissimilar lateral principal moments of inertia and subject to a constant compressive axial load. The coupling between flexural and torsional vibration due to mass eccentricity is not considered. In addition, a new approach for calculating correctly the effect of an axial load for a Timoshenko beam is presented based on the change in length of the centroidal line. It is found that the use of either a floating frame approach with the small strain assumption or a finite strain beam theory is necessary to obtain a consistent derivation of the terms corresponding to gyroscopic moments in the equations of motion. However, the virtual work of an axial load through the geometric shortening appears consistently in the formulation only when using a finite strain beam theory.


Author(s):  
S. H. Choi ◽  
C. Pierre ◽  
A. G. Ulsoy

Abstract The equations of motion of a flexible rotating shaft have been typically derived by introducing gyroscopic moments, in an inconsistent manner, as generalized work terms in a Lagrangian formulation or as external moments in a Newtonian approach. This paper presents the consistent derivation of a set of governing differential equations describing the flexural vibration in two orthogonal planes and the torsional vibration of a straight rotating shaft with dissimilar lateral principal moments of inertia and subject to a constant compressive axial load. The coupling between flexural and torsional vibration due to mass eccentricity is not considered. In addition, a new approach for calculating correctly the effect of an axial load for a Timoshenko beam is presented based on the change in length of the centroidal line. It is found that the use of either a floating frame approach with the small strain assumption or a finite strain beam theory is necessary to obtain a consistent derivation of the terms corresponding to gyroscopic moments in the equations of motion. However, the virtual work of an axial load through the geometric shortening appears consistently in the formulation only when using a finite strain beam theory.


Author(s):  
Sadegh Amirzadegan ◽  
Mohammad Rokn-Abadi ◽  
R. D. Firouz-Abadi

This work studies the nonlinear oscillations of an elastic rotating shaft with acceleration to pass through the critical speeds. A mathematical model incorporating the Von-Karman higher-order deformations in bending is developed to investigate the nonlinear dynamics of rotors. A flexible shaft on flexible bearings with springs and dampers is considered as rotor system for this work. The shaft is modeled as a beam and the Euler–Bernoulli beam theory is applied. The kinetic and strain energies of the rotor system are derived and Lagrange method is then applied to obtain the coupled nonlinear differential equations of motion for 6 degrees of freedom. In order to solve these equations numerically, the finite element method (FEM) is used. Furthermore, for different bearing properties, rotor responses are examined and curves of passing through critical speeds with angular acceleration due to applied torque are plotted. Then the optimal values of bearing stiffness and damping are calculated to achieve the minimum vibration amplitude, which causes to pass easier through critical speeds. It is concluded that the value of damping and stiffness of bearing change the rotor critical speeds and also significantly affect the dynamic behavior of the rotor system. These effects are also presented graphically and discussed.


Author(s):  
Francesco A. Raffa ◽  
Furio Vatta

Abstract In this paper the dynamic stiffness method is developed to analyze a rotating asymmetric shaft, i.e. a shaft whose transverse section is characterized by dissimilar principal moments of inertia. The shaft is modeled according to the Rayleigh beam theory including the effects of both translational and rotational inertia, and gyroscopic moments. The mathematical description is carried out in a reference system rotating at the shaft speed and is based on the exact solution of the governing differential equations of motion. The exact expressions of the shaft displacements are utilized for deriving the 8 × 8 complex dynamic stiffness matrix of the shaft. A new relationship is obtained which links the dynamic stiffness matrix of the asymmetric shaft to the 4 × 4 real dynamic stiffness matrix of the axisymmetric shaft.


1998 ◽  
Vol 120 (3) ◽  
pp. 776-783 ◽  
Author(s):  
J. Melanson ◽  
J. W. Zu

Vibration analysis of an internally damped rotating shaft, modeled using Timoshenko beam theory, with general boundary conditions is performed analytically. The equations of motion including the effects of internal viscous and hysteretic damping are derived. Exact solutions for the complex natural frequencies and complex normal modes are provided for each of the six classical boundary conditions. Numerical simulations show the effect of the internal damping on the stability of the rotor system.


Author(s):  
Amin Alibakhshi ◽  
Hamidreza Heidari

This paper aims to investigate the chaotic and nonlinear resonant behaviors of a dielectric elastomer-based microbeam resonator, incorporating material and geometric nonlinearities. The von Kármán strain-displacement equation is utilized to model the geometric nonlinearity. Material nonlinearity is described via the hyperelastic Gent model and Neo-Hookean constitutive law. The applied electrical loading to the elastomer includes both static and sinusoidal voltages. The governing equations of motion are formulated based on an energy approach and generalized Hamilton’s principle. Employing a single-mode Galerkin technique, the governing equations are obtained only in terms of time derivatives. The governing ordinary differential equations are solved by means of the multiple scale method and a time-integration-based solver. The nonlinear resonance characteristics are explored through the frequency-amplitude plots. The nonlinear oscillations of the system are analyzed making use of visual techniques such as phase plane diagram, Poincaré section and time history, and fast Fourier transform. Based on the results obtained, the resonant behavior is the hardening type. The vibration of the dielectric elastomer based-microbeam is the quasiperiodic response.


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Yongsheng Ren ◽  
Yuhuan Zhang

The free vibration and damping characteristics of rotating shaft with passive constrained layer damping (CLD) are studied. The shaft is made of fiber reinforced composite materials. A composite beam theory taking into account transverse shear deformation is employed to model the composite shaft and constraining layer. The equations of motion of composite rotating shaft with CLD are derived by using Hamilton’s principle. The general Galerkin method is applied to obtain the approximate solution of the rotating CLD composite shaft. Numerical results for the rotating CLD composite shaft with simply supported boundary condition are presented; the effects of thickness of constraining layer and viscoelastic damping layers, lamination angle, and rotating speed on the natural frequencies and modal dampings are discussed.


2002 ◽  
Vol 124 (4) ◽  
pp. 649-653
Author(s):  
Francesco A. Raffa ◽  
Furio Vatta

In this paper the dynamic stiffness method is developed to analyze a rotating asymmetric shaft, i.e., a shaft whose transverse section is characterized by dissimilar principal moments of inertia. The shaft is modelled according to the Rayleigh beam theory including the effects of both translational and rotational inertia, and gyroscopic moments. The mathematical description is carried out in a reference system rotating at the shaft speed and is based on the exact solution of the governing differential equations of motion. The exact expressions of the shaft displacements are utilized for deriving the 8×8 complex dynamic stiffness matrix of the shaft. A new relationship is obtained which links the dynamic stiffness matrix of the asymmetric shaft to the 4×4 real dynamic stiffness matrix of the axisymmetric shaft.


Author(s):  
A Mahmoudi ◽  
SAA Hosseini ◽  
M Zamanian

In this paper, the effect of nonlinearity on vibration of a rotating shaft passing through critical speed excited by nonideal energy source is investigated. Here, the interaction between a nonlinear gyroscopic continuous system (i.e. rotating shaft) and the energy source is considered. In the shaft model, the rotary inertia and gyroscopic effects are included, but shear deformation is neglected. The nonlinearity is due to large deflection of the shaft. Firstly, nonlinear equations of motion governing the flexural–flexural–extensional vibrations of the rotating shaft with nonconstant spin are derived by the Hamilton principle. Then, the equations are simplified using stretching assumption. To analyze the nonstationary vibration of the nonideal system, multiple-scale method is directly applied to the equations expressed in complex coordinates. Three analytical expressions that describe variation of amplitude, phase, and angular acceleration during passage through critical speed are derived. It is shown that Sommerfeld effect in specific range of driving torque occurs. Finally, effect of damping and nonlinearity on occurrence of Sommerfeld effect is investigated. It is shown that the linear model predicts the range of Sommerfeld effect occurrence inaccurately and, therefore, nonlinear analysis is necessary in the present problem.


2012 ◽  
Vol 160 ◽  
pp. 240-244 ◽  
Author(s):  
Li Tian ◽  
Shu Jin ◽  
Zi Long Wang

In this paper, multiple tuned liquid dampers control for rain-wind-induced response of long span transmission tower is investigated. Equations of motion for a structure-TLD system are derived. According to the mechanism of vibration control, rain-wind-induced vibration control for tower model with multiple tuned liquid dampers is carried out by using numerical simulation. Three-dimensional finite element model of tower based on a real project is established. Rain-wind load time history is simulated based on wind and rain theory. Time history curves and the maximum responses without and with tuned liquid damper under rain-wind excitation are analyzed and discussed. The results show that the tuned liquid damper could decrease the rain-wind-induced response of long span transmission tower, and the device could be installed in tower when the response too large.


Sign in / Sign up

Export Citation Format

Share Document