Design of a combined self-stabilizing electrodynamic passive magnetic bearing support for the automotive turbocharger rotor

2020 ◽  
pp. 107754632093348
Author(s):  
Tomasz Szolc ◽  
Krzysztof Falkowski ◽  
Paulina Kurnyta-Mazurek

The purpose of this study is to create a concept for what would be a structurally simple and operationally robust support for the automotive turbocharger rotor in electrodynamic passive magnetic bearings. Because this kind of magnetic suspension—in its fundamental version—is dynamically unstable, to avoid the disadvantages contained therein, what is being proposed is the addition of external damping through the employment of the newly designed combined self-stabilizing electrodynamic passive magnetic bearing. The electromagnetic stiffness and damping characteristics of combined electrodynamic passive magnetic bearings have been determined for various shaft rotational speeds by means of the advanced 3D finite element method. In this study, a dynamic interaction between the turbocharger rotor shaft and the passive magnetic suspension is proposed as a support for both the fundamental electrodynamic passive magnetic bearings and the suggested combined self-stabilizing passive magnetic bearings. Here, the main attention is focused on the asymptotic stability of both the rotor shaft suspension variants. The additional damping magnitudes required to stabilize the most sensitive lateral eigenmodes of the object under consideration have been determined by means of the Routh–Hurwitz stability criterion.

Author(s):  
Ernesto Bellabarba ◽  
Sergio Di´az ◽  
Victor Rastelli

This paper describes the design and manufacturing of an experimental facility for measurement of equivalent stiffness and damping of air bearings. For these preliminary tests, the shaft moves only in two perpendicular directions, laying in the rotation plane, thus producing 2×2 characteristic matrices. However, the rig can be easily modified to measure rotordynamic characteristics related to angular motion of the journal and measuring 4×4 matrices. The testing facility uses an experimental magnetic bearing suspension system that allows imposing any given orbit to the shaft, during the testing experiments. All individual parts, as well as the assembly, were dynamically studied to determine their modal response and optimize it according to the test rig’s operating frequency range. The principle of operation is to produce a shaft orbit using the magnetic suspension system and measuring the forces generated on the test bearing housing. Then, the stiffness and damping coefficients are calculated using an iterative parameter identification algorithm (a modification of the IVF method). The force measurement is performed via three load cells placed in a triangle configuration around the test bearing housing. All data is gathered and processed using PC based data acquisition boards and software. The present design allows testing air bearings up to 44 mm in external diameter and a bandwidth of 0 Hz to 1.000 Hz. Preliminary testing was performed on this research that demonstrates the capability of the apparatus to measure the dynamic properties with ease and accuracy.


Author(s):  
Nikolaj A Dagnaes-Hansen ◽  
Ilmar F Santos

A new type of flywheel energy storage system uses a magnetic suspension where the axial load is provided solely by permanent magnets, whereas active magnetic bearings are only used for radial stabilization. This means that the permanent magnet bearing must provide all the axial damping. Furthermore, it must have as low a negative radial stiffness as possible to reduce the workload on the radial active magnetic bearings. Many different mathematical models for determining force, stiffness, and damping of permanent magnet bearings are available in the literature. This work will further develop the most applicable analytical and numerical methods in order to make them directly implementable for designing permanent magnet thrust bearings for flywheel energy storage systems. The outcome is a fast and efficient method for determining force, stiffness, and damping when the bearing setup contains magnetic materials with relative permeability higher than one as well as when it does not. The developed method is validated against numerical and experimental results with good agreement.


Author(s):  
D. Dhar ◽  
L. E. Barrett

Abstract This paper presents a method for calculating the control forces and the bearing stiffness and damping coefficients to control the response of multi-mass flexible rotor systems mounted on magnetic bearings and subjected to unbalance or harmonic excitation forces. The capability for inclusion of hydrodynamic bearings is retained to model seal effects or to permit the design of magnetic bearings for hybrid systems. Control forces at the magnetic bearing locations are evaluated based on the desired shaft response specified by the modal coordinates. These forces are determined such that the error between the desired response and the achieved response is minimized in a least-square sense. Equivalent bearing coefficients are calculated from the control forces and the achieved response, which when superimposed on the nominal bearing coefficients yield the resultant magnetic bearing coefficients required for control. An example case is presented where control of rotor response has been attempted at the first and the second unbalance critical speeds. The results demonstrate appreciable improvement in response using magnetic bearings.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 862 ◽  
Author(s):  
Paulina Kurnyta-Mazurek ◽  
Artur Kurnyta ◽  
Maciej Henzel

This paper presents laboratory results on the measurement system of a magnetic suspension bearing system for a jet engine rotor of an unmanned aerial vehicle (UAV). Magnetic suspension technology enables continuous diagnostics of a rotary machine and eliminates of the negative properties of classical bearings. This rotor-bearing system consists of two radial magnetic bearings and one axial (thrust) magnetic bearing. The concept of the bearing system with a magnetically suspended rotor for UAV is presented in this paper. Rotor geometric and inertial characteristics were assumed according to the parameters of a TS-21 jet engine. Preliminary studies of the measurement system of rotor engines were made on a laboratory stand with homopolar active magnetic bearings. The measurement system consisted of strain gauges, accelerometers, and contactless proximity sensors. During the research, strains were registered with the use of a wireless data acquisition (DAQ) system. Measurements were performed for different operational parameters of rotational rotor speed, control system parameters, and with the presence of disturbance signals from the control system. In this paper, obtained operational characteristics are presented and discussed.


1993 ◽  
Vol 115 (3) ◽  
pp. 359-366 ◽  
Author(s):  
D. Dhar ◽  
L. E. Barrett

This paper presents a method for calculating the control forces and the bearing stiffness and damping coefficients to control the response of multi-mass flexible rotor systems mounted on magnetic bearings and subjected to unbalance or harmonic excitation forces. The capability for inclusion of hydrodynamic bearings is retained to model seal effects or to permit the design of magnetic bearings for hybrid systems. Control forces at the magnetic bearing locations are evaluated based on the desired shaft response specified by the modal coordinates. These forces are determined such that the error between the desired response and the achieved response is minimized in a least-square sense. Equivalent bearing coefficients are calculated from the control forces and the achieved response which when superimposed on the nominal bearing coefficients yield the resultant magnetic bearing coefficients required for control. An example case is presented where control of rotor response has been attempted at the first and the second unbalance critical speeds. The results demonstrate appreciable improvement in response using magnetic bearings.


Author(s):  
Benjamin Cho ◽  
Dexter Johnson ◽  
Andrew Provenza ◽  
Carlos Morrison ◽  
Gerald Montague

The NASA Glenn Research Center (GRC) has developed a magnetic bearing system for the Dynamic Spin Rig (DSR) with a fully suspended shaft that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteroplolar radial magnetic bearings and a thrust magnetic bearing and the associated control system were integrated into the DSR to provide magnetic excitation as well as non-contact magnetic suspension of a 15.88 kg (35 lb) vertical rotor with blades to induce turbomachinery blade vibration. For rotor levitation, a proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, more blade vibration amplitude, and energy savings for the system. The test results of a variety of controllers that were demonstrated up to 10,000 rpm are shown. Furthermore, rotor excitation operation andconceptual study of active blade vibration control are addressed.


2021 ◽  
Vol 2094 (5) ◽  
pp. 052047
Author(s):  
O A Kolenchukov ◽  
E A Kozhukhov ◽  
E A Petrovsky ◽  
V V Bukhtoyarov ◽  
V A Kachaeva

Abstract In almost every mechanical system, moving mechanisms slide over stationary parts, creating friction and, as a result, unwanted energy losses. In engineering, sliding or rolling bearings are most often used as supports. However, any system can benefit from a greater reduction in friction between components. As will be shown in this article, the stability problem can be solved by blocking vibrations in the radial direction. The latest technological advances in the field of manufacturing magnetic materials make it possible to integrate magnetic bearings with permanent magnetization (hereinafter - MBPM) into a larger number of mechanical systems. This blocking of radial movement is carried out without the use of a mechanical sliding bearing, chosen for its simplicity and ease of integration. To facilitate the integration of the MBPM into the overall system of the device, it is important to know the mechanical properties of magnetic bearings, namely stiffness and damping, as well as the performance characteristics and limits of their operation. This article examines the possibility of using an adaptive damper in centrifugal pumps to ensure the technological reliability of the equipment. Alternating permanent magnets in the direction of their movement is the most optimal option, leading to large and smooth hysteresis loops of force - displacement. The proposed arrangement of magnets ensures the adaptability of the device with the determination of its optimal size, and also takes into account the edge and surface effects in the design of the damper. In addition, the article discusses theoretical and technical issues of levitation - free floating of bodies. Magnetic suspension can be used to study only those processes where mechanical connections are undesirable. The use of magnetic suspension for balancing centrifugal pumps during transportation of biomass processing products, supports of mixing devices in reactors in biomass processing reactors and other machine components opens up wide opportunities.


2016 ◽  
Vol 2 (3) ◽  
pp. 97-108
Author(s):  
V E Vavilov

Introduction. Typically, when developing mathematical models magnetocavitation systems (magnetic bearings, electrostatic bearings, hybrid magnetic bearings (GMP, etc.) is considered just the very bearing as a separate, isolated Electromechanical system. This approach allows us to accurately explore the process magnetocavitation systems, but practically does not allow to evaluate the processes occurring in the system of magnetic bearing-object position. To solve this problem, the author proposes a different approach to the analysis of the processes in magnetocavitation systems in General and GPC in particular considering the magnetic bearing-object position, as a single complex. Goal. The work aimed the creation of a generalized analytical model of high-speed, AMPE with coercivity permanent magnet (VPM) on an elastic bearing supports, taking into account the mutual influence of processes in AMPA and bearing supports. This task is new and relevant and is essential to modern engineering. To solve this problem this paper developed a generalized mathematical model of the rotor system on a hybrid magnetic suspension. Evaluate the impact of hybrid magnetic bearings on the overall behavior of the rotor system. Performed analysis of processes in Electromechanical energy converters and mechanical processes occurring in the rotary system. Method and methodology. The research methodology is based on the joint solution of Maxwell equations and equations describing the mechanical processes of a rotor system with five degrees of freedom. Conclusion. The generalized mathematical model of high-speed, AMPE with VPM on a non-contact bearing supports and conducted her research. Based on research of the developed mathematical model, the authors developed an original control algorithm for the rotor position in a hybrid magnetic bearings, which allows for the design of high-speed, AMPE with VPM to abandon the position sensors of the rotor. In addition, on the basis of the results of calculations, a method was developed for diagnostics of eccentricity of rotor are high-speed, AMPE with VPM, as well as new methods of calculation of high-speed, AMPE with VPM, past experimental verification.


1986 ◽  
Vol 108 (1) ◽  
pp. 24-31 ◽  
Author(s):  
K. D. Reinig ◽  
A. A. Desrochers

The use of magnetic bearings for supporting a rotor-shaft system has led to increasing interest in active control schemes. In this work, two disturbance accommodating controllers are developed which minimize the vibration of the system due to the mass imbalance of the rotor. The first controller generates an estimate of the disturbance force arising from this mass imbalance and then cancels its effect through the magnetic bearings. This keeps the rotor displacement at zero but often at the expense of high bearing forces. The second controller remedies this by estimating the eccentricity and then applying a force to the controlled shaft end to offset the effect of the eccentricity. This requires the controlled shaft end to follow a path so that the rotor shaft pivots about the center of mass. Thus, the center of mass of the system does not translate and so a disturbance force never occurs. Therefore, a small magnetic bearing force can be used to control the vibration of a large rotor. Both methods are compared to conventional bearing strategies.


2021 ◽  
pp. 1-50
Author(s):  
Pranab Samanta ◽  
Harish Hirani

Abstract The present work portrays the latest review of the progressive advances in passive magnetic bearing technology. Passive magnetic bearings are an old technology with many encouraging properties. However, there are a number of inherent issues with design, analysis, and performance characterization that must be considered for reliable operation. Finally, it examines in detail the geometrical configurations, load-bearing capacity, dynamic behavior and stability connected with stiffness and damping


Sign in / Sign up

Export Citation Format

Share Document