Inactivation of Microorganisms in Cloudy Ginkgo (Ginkgo biloba Linn.) Juice by Pulsed Electric Fields

2007 ◽  
Vol 13 (2) ◽  
pp. 83-90 ◽  
Author(s):  
H. Zhang ◽  
Z. Wang ◽  
R.-J. Yang ◽  
S.-Y. Xu

Pulsed electric fields (PEF) were applied to neutral ginkgo cloudy juice to study the influence of the electric field strength, the treatment time and temperature on microbial inactivation. The results showed that microbial inactivation increased with the electric field strength, the treatment time and temperature. PEF treatment caused 3.39 and 4.44-log cycles reduction of coliforms and total plate counts, respectively, when pulse duration was 3 μs, the electric field strength 30 kV/cm, the treatment time 520 μs and the water bath temperature 15°C. Under the same conditions, the microbial shelf life of ginkgo cloudy juice was extended to 24 days at 4°C and 18 days at room temperature. A 3.7-log cycles reduction of the total yeast and mould counts was obtained by applying 390 μs of 30 kV/cm at 15°C.Yeast and mould cells were less resistant to PEF process than bacteria cells. The effect of heat generated during the PEF treatment was limited on microbial inactivation. Temperature and the induced heat by PEF had synergistic effects to microbial inactivation in cloudy ginkgo juice.

Author(s):  
Zhong Han ◽  
Qian Yu ◽  
Xin An. Zeng ◽  
Dong Hui Luo ◽  
Shu Juan Yu ◽  
...  

Maize starch-water suspensions (8.0%) were submitted to the pulsed electric fields (PEF) with different electric field strength and treatment time up to 50 kV/cm and 1272 μs. Samples were characterized by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and nuclear magnetic resonance (NMR). GPC analysis showed that molecular weights (Mw and Mn) were decreased with increasing electric field strength and treatment time. DSC studies showed a decrease in gelatinization temperatures (To and Tp) and the enthalpy of gelatinization (ΔHgel) with increasing electric field strength and treatment time. It was explored that electric field strength played a dominant role in the PEF treatments. On the other hand, it was demonstrated from NMR and TGA analysis that no significant difference among the native and PEF-treated maize starches was obtained, which indicated that PEF treatments did not affect the chemical structure of maize starch.


Author(s):  
Wei Zhao ◽  
Ruijin Yang ◽  
Xiao Hua ◽  
Wenbin Zhang ◽  
Yali Tang ◽  
...  

Pulsed electric fields (PEF) were utilized for inhibition of polyphenoloxidase (PPO) of pear. The effects of PEF electric field strength, treatment time and the temperature on the reduction of PPO activity were evaluated in this study. A maximum of 95.5% inactivation of pear PPO was observed with the PEF treatment at 35 kV/cm for 1200 ?s at 40°C. The classical first-order inactivation as well as modified Hülsheger’s kinetic model adequately described the enzymatic inhibition in PEF processing. The second-order polynomial equation was a suitable model to analyze the inactivation of PPO using PEF technology since the PEF parameters such as PEF electric field strength, treatment time and temperature could be involved in this model.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yan Mi ◽  
Quan Liu ◽  
Pan Li ◽  
Jin Xu

Carbon nanotubes (CNTs) with large aspect ratios and excellent electrical properties can enhance the killing effect of nanosecond pulsed electric fields (nsPEFs) on tumor cells, which can improve the electrical safety of nsPEF during tumor treatment. To study the mechanism of the CNT-enhanced killing effect of a nsPEF on tumor cells, a spherical, single-cell, five-layer dielectric model containing randomly distributed CNTs was established using COMSOL and MATLAB, and then, the effects of the addition of CNTs on the electric field and the electroporation effect on the inner and outer membranes were analyzed. The results showed that CNTs can enhance the local electric field strength due to a lightning rod effect, and the closer the CNT tip was to the cell, the greater the electric field strength was around the cell. This increase in the local electric field strength near the cells enhanced the electroporation effects, including pore density, pore area, and pore flux. The simulation results presented in this paper provide theoretical guidance for subsequent development of nsPEF combined with CNTs for use in both cell and tissue experiments.


Author(s):  
Adedayo Otunola ◽  
Ayman El-Hag ◽  
Shesha Jayaram ◽  
William A Anderson

A study was conducted to assess the effectiveness of pulsed electric field (PEF) inactivation of a heterogeneous community of microbes. The aim was to assess the impact of process parameters on an indigenous population of microbes present in milk, rather than pure cultures used in other studies. Tests over an electric field strength range of 10 – 40 kV/cm and 10 to 120 pulses per millilitre showed that high electric field strength and pulse number inactivated microbes by up to approximately 2 log. Inoculum size affected PEF effectiveness when only a few pulses were applied. A significant log-reduction was achieved against the indigenous microbes found in milk that were apparently recalcitrant to commercial pasteurization. Microbial inactivation was more extensive when E. coli was not added to the indigenous population, indicating that the added pure culture was more resistant than the indigenous microbes. The milk fat content had a significant negative effect on the extent of log-reduction for indigenous microbes, when 2% and 18% levels were compared.


2018 ◽  
Vol 9 ◽  
pp. 1544-1549 ◽  
Author(s):  
Margarita A Kurochkina ◽  
Elena A Konshina ◽  
Daria Khmelevskaia

We have experimentally investigated the effect of the reorientation of a nematic liquid crystal (LC) in an electric field on the photoluminescence (PL) of CdSe/ZnS semiconductor quantum dots (QDs). To the LC with positive dielectric anisotropy, 1 wt % QDs with a core diameter of 5 nm was added. We compared the change of PL intensity and decay times of QDs in LC cells with initially planar or vertically orientated molecules, i.e., in active or passive LC matrices. The PL intensity of the QDs increases four-fold in the active LC matrix and only 1.6-fold in the passive LC matrix without reorientation of the LC molecules. With increasing electric field strength, the quenching of QDs luminescence occurred in the active LC matrix, while the PL intensity did not change in the passive LC matrix. The change in the decay time with increasing electric field strength was similar to the behavior of the PL intensity. The observed buildup in the QDs luminescence can be associated with the transfer of energy from LC molecules to QDs. In a confocal microscope, we observed the increase of particle size and the redistribution of particles in the active LC matrix with the change of the electric field strength. At the same time, no significant changes occurred in the passive LC matrix. With the reorientation of LC molecules from the planar in vertical position in the LC active matrix, quenching of QD luminescence and an increase of the ion current took place simultaneously. The obtained results are interesting for controlling the PL intensity of semiconductor QDs in liquid crystals by the application of electric fields.


1967 ◽  
Vol 22 (12) ◽  
pp. 1890-1903
Author(s):  
F. Karger

In a previous paper31 discrepancies between theory and experiment were found on investigating the positive column in a curved magnetic field. The approximation derived in 31 for the torus drift in a weakly ionized magnetoplasma is therefore checked here (Part I) with a refined theory which also yields the transverse electric field strength. Experimentally, both the transverse electric fields and the density profiles in the DC discharge were determined in addition to the longitudinal electric field strength.The discrepancies occurring in 31 are ascribed to the fact that the plasma concentrates at the cathode end of the magnetic field coils, this effect having a considerable influence on the form of the transverse density profile and on the stability behaviour. Part II later will show how the influence of this concentration can be eliminated and what effect in the current-carrying toroidal plasma causes a marked reduction of the charge carrier losses.


2012 ◽  
Vol 706-709 ◽  
pp. 2617-2621
Author(s):  
Chang Shu He ◽  
Xiang Zhao ◽  
Wei Ping Tong ◽  
Liang Zuo

Specimens cut from a cold-rolled IF steel sheet of 1 mm thickness were respectively annealed at 750°C for 20min under a range of DC electric fields (1kV/cm~4kV/cm). The Effect of electric field strength on recrystallization texture of IF steel sheet was studied by mean of X-ray diffraction ODF analysis. It was found that γ-fiber textures were notably enhanced as electric field strength increased. The strength of γ-fiber textures got their peak values as the applied electric field reached to 4kV/cm. The possible reason for such phenomena was discussed in the viewpoint of interaction between the applied electric field and the orientation-dependent stored-energy in deformed metals which is known as the driving force for recrystallization during annealing.


2004 ◽  
Vol 67 (11) ◽  
pp. 2596-2602 ◽  
Author(s):  
PEDRO ELEZ-MARTÍNEZ ◽  
JOAN ESCOLÀ-HERNÁNDEZ ◽  
ROBERT C. SOLIVA-FORTUNY ◽  
OLGA MARTÍN-BELLOSO

Saccharomyces cerevisiae is often associated with the spoilage of fruit juices. The purpose of this study was to evaluate the effect of high-intensity pulsed electric field (HIPEF) treatment on the survival of S. cerevisiae suspended in orange juice. Commercial heat-sterilized orange juice was inoculated with S. cerevisiae (CECT 1319) (108 CFU/ml) and then treated by HIPEFs. The effects of HIPEF parameters (electric field strength, treatment time, pulse polarity, frequency, and pulse width) were evaluated and compared to those of heat pasteurization (90°C/min). In all of the HIPEF experiments, the temperature was kept below 39°C. S. cerevisiae cell damage induced by HIPEF treatment was observed by electron microscopy. HIPEF treatment was effective for the inactivation of S. cerevisiae in orange juice at pasteurization levels. A maximum inactivation of a 5.1-log (CFU per milliliter) reduction was achieved after exposure of S. cerevisiae to HIPEFs for 1,000 μs (4-μs pulse width) at 35 kV/cm and 200 Hz in bipolar mode. Inactivation increased as both the field strength and treatment time increased. For the same electric field strength and treatment time, inactivation decreased when the frequency and pulse width were increased. Electric pulses applied in the bipolar mode were more effective than those in the monopolar mode for destroying S. cerevisiae. HIPEF processing inactivated S. cerevisiae in orange juice, and the extent of inactivation was similar to that obtained during thermal pasteurization. HIPEF treatments caused membrane damage and had a profound effect on the intra-cellular organization of S. cerevisiae.


2009 ◽  
Vol 60-61 ◽  
pp. 330-333
Author(s):  
Wei Chih Chen ◽  
Ting Fu Hong ◽  
Wen Bo Luo ◽  
Chang Hsien Tai ◽  
Chien Hsiung Tsai ◽  
...  

This paper presented a parametric experimental study of electrokinetic instability phenomena in a cross-shaped configuration microfluidic device with varying channel depths and conductivity ratios. The flow instability is observed when applied electric field strength exceeds a certain critical value. The critical electric field strength is examined as a function of the conductivity ratio of two samples liquid, microchannel depth, and the treatment of microchannel wetted surface. It is found that the critical electric field strengths for the onset of electrokinetic instability are strongly dependent on the conductivity ratio of two samples liquid, and decrease as the channel depths increasing of microfluidic devices. In the present study, the surface inside microchannels is treated utilizing hydrophilic and hydrophobic organic-based SOG (spin-on-glass) nanofilms for glass-based microchips. The experimental results indicate that no significant difference for the critical electric fields for the onset of electrokinetic instability phenomena in both hydrophilic and hydrophobic SOG coating in the surface of microchannels. The critical electric fields for the onset of electrokinetic instability phenomena are slightly lower in both SOG coated cases in compare with that of the non-coated microchannel.


Sign in / Sign up

Export Citation Format

Share Document