Revalorized broccoli by-products and mustard improved quality during shelf life of a kale pesto sauce

2021 ◽  
pp. 108201322098310
Author(s):  
Noelia Castillejo ◽  
Ginés Benito Martínez-Hernández ◽  
Francisco Artés-Hernández

The effect of revalorized Bimi leaves (B) and/or mustard (M) addition, as supplementary ingredients, to develop an innovative kale (K) pesto sauce was studied. Microbial, physicochemical (color, total soluble solids content -SSC-, pH and titratable acidity –TA-) and sensory quality were studied during 20 days at 5 °C. Bioactive compounds changes (total phenolics, total antioxidant capacity and glucoraphanin contents) were also monitored throughout storage. The high TA and pH changes in the last 6 days of storage were avoided in the K+B pesto when adding mustard, due to the antimicrobial properties of this brassica seed. SSC was increased when B + M were added to the K pesto, which positively masked the kale-typical bitterness. Mustard addition hardly change yellowness of the K pesto, being not detected in the sensory analyses, showing K+B+M pesto the lowest color differences after 20 days of shelf life. The addition of Bimi leaves to the K pesto enhanced its phenolic content while mustard addition did not negatively affect such total antioxidant compounds content. Finally, mustard addition effectively aimed to glucoraphanin conversion to its bioactive products. Conclusively, an innovative kale pesto supplemented with Bimi by-products was hereby developed, being its overall quality well preserved up to 20 days at 5 °C due to the mustard addition.

Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 318 ◽  
Author(s):  
Monserrat Escamilla-García ◽  
María Rodríguez-Hernández ◽  
Hilda Hernández-Hernández ◽  
Luis Delgado-Sánchez ◽  
Blanca García-Almendárez ◽  
...  

Papaya production plays an important economic role in Mexico’s economy. After harvest, it continues to ripen, leading to softening, skin color changes, development of strong aroma, and microbial spoilage. The objective of this work was to apply an active coating of chitosan–starch to increase papaya shelf life and to evaluate physicochemical and antimicrobial properties of the coating. Papaya surfaces were coated with a chitosan-oxidized starch (1:3 w/w) solution and stored at room temperature (25 ± 1 °C) for 15 days. Variables measured were color, titratable acidity, vitamin C, pH, soluble solids, volatile compounds by gas chromatography, texture, homogeneity by image analysis, and coating antimicrobial activity. At the end of the storage time, there were no significant differences (p > 0.05) between coated and uncoated papayas for pH (4.3 ± 0.2), titratable acidity (0.12% ± 0.01% citric acid), and soluble solids (12 ± 0.2 °Bx). Papaya firmness decreased to 10 N for coated and 0.5 N for uncoated papayas. Volatile compounds identified in uncoated papaya (acetic acid, butyric acid, ethyl acetate, ethyl butanoate) are related to fermentation. Total microbial population of coated papaya decreased after 15 days, whereas population of uncoated papaya increased. This active coating permitted longer shelf life of papaya than that of the uncoated fruit.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1466
Author(s):  
Said A. Shehata ◽  
Emad A. Abdeldaym ◽  
Marwa R. Ali ◽  
Reda M. Mohamed ◽  
Rwotonen I. Bob ◽  
...  

Utilization of essential oils alone or incorporation with edible films is an appropriate technique to conserve the quality attributes and reduce post-harvest deterioration in fresh vegetables and fruits. Strawberries, being perishable fruits have a short shelf life, and using essential oils is considered one of the most suitable methods to prolong their shelf life during storage. The current study assessed the impact of different essential oils, including lemon oil (L), orange oil (O) and mandarin oil (M) on the physicochemical and microbial load of strawberries (Fragaria × ananassa cv. Festival) stored at 2 ± 1 °C and 95% relative humidity (RH) for 18 days. The differences in the physicochemical and microbial properties of strawberries were assessed by determining the following parameter changes: weight loss, decay percentage, firmness, soluble solids content, titratable acidity, color, anthocyanins, vitamin C, total phenol, total antioxidant, catalase activity, polyphenol oxidase activity, sensory evaluation, microbial content, total coliforms, molds, and yeasts. The results of this study indicated that the fruits treated with all essential oils treatments (L, O and M) had higher total antioxidant content and physicochemical properties than untreated fruits, due to protection against the microbial growth of molds, and yeasts. At the end of the storage period, the treated fruits showed a greater acceptance and sensory attributes than the untreated fruits. Furthermore, the correlation study showed a significant and negative relationship between the total antioxidant of treated fruits and following quality attributes including, weight loss, decay percentage, respiration rate soluble solids content, polyphenol oxidase activity, molds, and yeasts. It is noteworthy that all the essential oil treatments extended the shelf-life of strawberries and delayed their deterioration up to 18 days.


Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 240 ◽  
Author(s):  
Custódia Gago ◽  
Rui Antão ◽  
Cristino Dores ◽  
Adriana Guerreiro ◽  
Maria Graça Miguel ◽  
...  

The effect of coating ‘Rocha’ pears with alginate-based nanoemulsions enriched with lemongrass essential oil (LG) or citral (Cit) was investigated. Fruit were treated with the nanoemulsions: sodium alginate 2% (w/w) + citral 1% (w/w) (Cit1%); sodium alginate 2% (w/w) + citral 2% (w/w) (Cit2%); sodium alginate 2% (w/w) + lemongrass 1.25% (w/w) (LG1.25%); sodium alginate 2% (w/w) + lemongrass 2.5% (w/w) (LG2.5%). Then, fruit were stored at 0 °C and at 95% relative humidity, for six months. Fruit samples were taken after two, four and six months, and then placed at 22 °C. Upon removal and after 7 d shelf-life, fruit were evaluated for colour CIE (L*, h◦), firmness, soluble solids content (SSC), titratable acidity (TA), weight loss, electrolytic leakage, microbial growth, symptoms of superficial scald and internal browning. All nanoemulsions had droplets in the nano range <500 nm, showed uniformity of particle size and stable dispersion. Cit-nanoemulsions had lower droplet size and higher stability than LG. No nanoemulsion showed cytotoxicity. Coatings reduced fruit colour evolution and preserved better firmness than control. After shelf-life, better firmness was found in LG-coated fruit. Coatings did not affect SSC and TA. Microbial growth was below the safety limits in all treatments. Fruit treated with LG-nanoemulsions did not show scald symptoms and panelists preferred LG1.25% coated fruit. Cit2% treated fruit showed the highest scald and internal browning symptoms, while LG1.25% did not show any disorders. This study suggests that LG-nanocoatings have the potential for preserving the quality of ‘Rocha’ pear.


HortScience ◽  
2004 ◽  
Vol 39 (5) ◽  
pp. 1062-1065 ◽  
Author(s):  
John M. DeLong ◽  
Robert K. Prange ◽  
Peter A. Harrison

`Redcort Cortland' and `Redmax' and `Summerland McIntosh' apples (Malus ×domestica Borkh.) were treated with 900 nL·L-1 of 1-methylcyclopropene (1-MCP) for 24 hours at 20 °C before storage and were kept at 3 °C in either a controlled atmosphere (CA) of 2 kPa O2 and <2.5 kPa CO2 or in an air (RA) environment for up to 9 months. After 4.5 months, half of the fruit were treated with a second 900 nL·L-1 1-MCP application in air at 3 °C for 24 hours and then returned to RA or CA storage. At harvest and following removal at 3, 6, and 9 months and a 7-day shelf life at 20 °C, fruit firmness, titratable acidity (TA) and soluble solids content (SSC) were measured, while internal ethylene concentrations (IEC) in the apple core were quantified after 1 day at 20 °C. Upon storage removal and following a 21-day shelf life at 20 °C, disorder incidence was evaluated. 1-MCP-treated apples, particularly those held in CA-storage, were more firm and had lower IEC than untreated fruit. Higher TA levels were maintained with 1-MCP in all three strains from both storages, while SSC was not affected. Following the 6- and/or 9-month removals, 1-MCP suppressed superficial scald development in all strains and reduced core browning and senescent breakdown in RA-stored `Redmax' and `Summerland' and senescent breakdown in RA-stored `Redcort'. 1-MCP generally maintained the quality of `Cortland' and `McIntosh' fruit held in CA and RA environments (particularly the former) to a higher degree than untreated apples over the 9-month storage period. A second midstorage application of 1-MCP at 3 °C did not improve poststorage fruit quality above a single, prestorage treatment.


2019 ◽  
Vol 41 (1) ◽  
Author(s):  
Dianini Brum Frölech ◽  
Adriane Marinho de Assis ◽  
Michele Carla Nadal ◽  
Letícia Leal de Mello ◽  
Bruna Andressa dos Santos Oliveira ◽  
...  

Abstract the aim of this study was to evaluate the chemical characteristics and sensory acceptance of juices and cuts of ‘Bordô’ and ‘Niágara Rosada’ grapes. The experimental design was in a one-factor scheme, with five levels. Treatments were: T1 – ‘Bordô’ (100%); T2 – ‘Bordô’ (70%) + ‘Niágara Rosada’ (30%); T3 – ‘Bordô’ (50%) + ‘Niágara Rosada’ (50%); T4 – ‘Bordô’ (30%) + ‘Niágara Rosada’ (70%); T5 – ‘Niágara Rosada’ (100%). Chemical analyses were: content of soluble solids, pH and titratable acidity, and sensory analyses were: color, aroma, flavor, body and global acceptance. For the soluble solids content, the highest averages were verified in T1, T2 and T3 treatments. As for pH, the highest value was recorded in T3, T4 and T5 treatments, while the highest titratable acidity was recorded in T4 and T5 treatments. In the sensory analysis, in juice with the highest percentage of ‘Bordô’ grape (T1 and T2) or with the same proportion of ‘Bordô’ and ‘Niágara Rosada’ (T3), the highest mean acceptance values were found. Thus, it could be concluded that the use of 100% ‘Bordô’ grape and ‘Bordô’ juice cut with up to 50% ‘Niágara Rosada’ are presented as alternatives for juice production.


2006 ◽  
Vol 12 (5) ◽  
pp. 437-443 ◽  
Author(s):  
A. P. Candan ◽  
J. Graell ◽  
C. Crisosto ◽  
C. Larrigaudière

Rapid softening is one of the most important factors that limits the market life of plums. To avoid this problem, ‘Blackamber’ plums were treated with 0, 150, 300 and 600ppb of 1-methylcyclopropene (1- MCP) and their quality evaluated after 15, 30 and 50 days of storage at 0°C, immediately and after 6 days at 25°C. 1-MCP treatment effectively decreased ethylene production during storage and shelf-life in fruits kept 15 and 30 days at 0°C. In contrast, fruits kept for 50 days at 0°C showed a significant increase in ethylene production during shelf-life. Changes in ethylene production by 1-MCP were associated with a decrease of firmness loss and maintenance of titratable acidity but not with the development of red flesh colour. Soluble solids content of the fruit was not affected by the 1-MCP treatment. In this assay no significant symptoms of chilling injury (CI) or rot were observed. Overall, the results presented in this assay ascertained ethylene on quality changes in ‘Blackamber’ plums. They also showed that 1- MCP could be considered commercially to improve the storage life and resistance to mechanical bruising in ‘Blackamber’ plums without prejudicial effects on quality.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Deniz Erogul ◽  
İsmail Özsoydan

AbstractA good peach fruit should have properties of high quality, as these properties directly affect the shelf life. This study aims to determine the effects of different salicylic acid (SA) treatments in the pre-harvest period on the ‘Cresthaven’ peach cultivar on the fruit quality at harvest and after storage at 2°C (8 days) plus shelf life at 20°C (2 days). Fruits with SA treatments have better characteristics such as fruit weight, fruit flesh firmness, total antioxidant content, total phenol content and titratable acidity level at harvest and after storage plus shelf life. With treatments, no changes were observed in the total soluble solids both at harvest and after storage plus shelf life. SA treatments decreased loss of fruit flesh firmness and loss of acidity after shelf life, compared with the control. In fruits with 2 mM SA acid treatment, the reduction in fruit firmness and acidity loss were the least, and as a result of the study it was determined as the most effective pre-harvest SA concentration that could be used in the ‘Cresthaven’ peach variety.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 556C-556b
Author(s):  
P. Perkins-Veazie ◽  
J.K. Collins

Application of modified-atmosphere storage (MA) (high carbon dioxide and/or low oxygen) extends the shelf life of several fruits. This study was done to determine the effects of MA on quality and flavor of blackberries. `Navaho' and `Arapaho' blackberries were harvested in 1998 and 1999, precooled overnight at 2 °C, and placed in 0.5-L treatment jars. Treatments of 15% CO2/10% O2 or of air (0.03% CO2/21% O2) were applied at 2 °C for 3, 7, or 14 days. After treatment application, jars were held at 2 °C for an additional 11, 7, or 0 days, respectively. Seven and 14 days of application of CO2 reduced the incidence of decayed and leaky berries by 10% to 20% for both `Arapaho' and `Navaho', but firm berries decreased 10% after 14 days of treatment. Titratable acidity was slightly lower, and pH higher, in control fruit but soluble solids content was not affected by treatment. Anthocyanin content was not affected by treatment in `Arapaho' berries but was lower in `Navaho' berries after 7 and 14 days of treatment. Samples taken for taste tests after 3 and 7 days of treatment had no off-odors or off-flavors. `Arapaho' and `Navaho' blackberries benefitted from high CO2 storage, with a minimum of 7 days of treatment application needed to increase marketable berries by 10%.


2013 ◽  
Vol 23 (1) ◽  
pp. 12-23 ◽  
Author(s):  
Sharon Dea ◽  
Jeffrey K. Brecht ◽  
Maria Cecilia do Nascimento Nunes ◽  
Elizabeth A. Baldwin

The optimal ripeness stage for processing and marketing fresh-cut mangoes (Mangifera indica ‘Kent’) with best quality and maximum shelf life was determined. The initial ripeness stage selection was based on whole fruit firmness because this quality attribute was more reliable in predicting fresh-cut shelf life than flesh color or soluble solids content (SSC). Overall, the visual quality deteriorated differently and at different rates among ripeness stages. The shelf life, based on subjective visual evaluation, was 10, 7, and 5 days for ripeness stages corresponding to an average flesh firmness of 35, 30, and 25 N, respectively, and was mainly limited by desiccation and development of off-odor for the two firmer ripeness stages or symptoms of edge tissue damage and spoilage for the least firm stage. The slices from fruit with the highest initial firmness remained firmer during storage, had the lowest pH and SSC to titratable acidity (TA) ratio, and had the highest contents of volatile ketones and esters. The softest slices had the highest pH, SSC:TA ratio, and total ascorbic acid (TAA) content, as well as the lowest TA and highest volatile aldehyde and alcohol contents. Intermediate firmness slices had intermediate pH, SSC:TA ratio, color, and TAA content. Also, they had less volatile alcohols and aldehydes than slices from riper fruit but had similar content of esters as slices from the less ripe fruit. Therefore, based on the results from this study, an initial firmness of 30 N is recommended to process mangoes into fresh-cut slices because it assures the best quality and maximum shelf life based on textural, visual, and compositional attributes.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Sara Elena Hernández-Guerrero ◽  
Rosendo Balois-Morales ◽  
Yolotzin Apatzingán Palomino-Hermosillo ◽  
Graciela Guadalupe López-Guzmán ◽  
Guillermo Berumen-Varela ◽  
...  

Edible coatings based on 2% starch (w/v) extracted from tropical fruits were applied on stenospermocarpic mango fruits with the objective to prolong its shelf life during storage and give them an added value since they have no commercial value. In this regard, stenospermocarpic mangoes were coated with starch from banana “Pear” (T1 and T2), starch from soursop (T3 and T4), and starch from stenospermocarpic mango (T5 and T6), and two uncoated control treatments (T7 and T8). The fruit of T1, T3, T5, and T7 treatments were stored for 15 days (10 days at 10 ± 2°C and then at 22 ± 2°C for 5 days). The fruit of T2, T4, T6, and T8 treatments were stored for 10 days at 22 ± 2°C. Data were analyzed with a 4×2 factorial experimental design. Weight loss (g), firmness (N), total soluble solids content (%), titratable acidity (%), and color (L∗h∗C∗) were evaluated. The fruit coated with mango starch (T5) showed less weight loss (2.57%), greater firmness (18.6 N), as well as a high content of TSS (28.76%) compared with the control. The T5 extended the shelf life of the fruit up to 15 days (10 days at 10 ± 2°C and 5 days at 22 ± 2°C).


Sign in / Sign up

Export Citation Format

Share Document