scholarly journals High-Throughput Screening and Identification of Human Adenovirus Type 5 Inhibitors

Author(s):  
Xiaojing Wen ◽  
Li Zhang ◽  
Shan Zhao ◽  
Qiang Liu ◽  
Wenyi Guan ◽  
...  

Human adenovirus infections can develop into diffuse multi-organ diseases in young children and immunocompromised patients, and severe cases can lead to death. However, there are no approved antiviral drugs available to treat adenovirus diseases. In this study, a chemiluminescence-based, high-throughput screening (HTS) assay was developed and applied to screen human adenovirus 5(HAdV5)inhibitors from 1,813 approved drug library and 556 traditional Chinese medicine-sourced small-molecule compounds. We identified three compounds with in vitro anti-HAdV5 activities in the low-micromolar range (EC50 values 0.3-4.5 μM, selectivity index values 20-300) that also showed inhibitory effects on HAdV3. Cardamomin (CDM) had good anti-HAdV5 activity in vitro. Furthermore, three dilutions of CDM (150, 75, and 37.5 mg/kg/d) administered to BALB/c mouse models inhibited HAdV5-fluc infection at 1 day post-infection by 80% (p < 0.05), 76% (p < 0.05), and 58% (p < 0.05), respectively. HE-staining of pathological tissue sections of mice infected with a wildtype adenoviral strain showed that CDM had a protective effect on tissues, especially in the liver, and greatly inhibited virus-induced necrosis of liver tissue. Thus, CDM inhibits adenovirus replication in vivo and in vitro. This study established a high-throughput screening method for anti-HAdV5 drugs and demonstrated CDM to be a candidate for HAdV5 therapy, potentially providing a new treatment for patients infected with adenoviruses.

2020 ◽  
Author(s):  
Yuru Wang ◽  
Christopher D Katanski ◽  
Christopher Watkins ◽  
Jessica N Pan ◽  
Qing Dai ◽  
...  

Abstract AlkB is a DNA/RNA repair enzyme that removes base alkylations such as N1-methyladenosine (m1A) or N3-methylcytosine (m3C) from DNA and RNA. The AlkB enzyme has been used as a critical tool to facilitate tRNA sequencing and identification of mRNA modifications. As a tool, AlkB mutants with better reactivity and new functionalities are highly desired; however, previous identification of such AlkB mutants was based on the classical approach of targeted mutagenesis. Here, we introduce a high-throughput screening method to evaluate libraries of AlkB variants for demethylation activity on RNA and DNA substrates. This method is based on a fluorogenic RNA aptamer with an internal modified RNA/DNA residue which can block reverse transcription or introduce mutations leading to loss of fluorescence inherent in the cDNA product. Demethylation by an AlkB variant eliminates the blockage or mutation thereby restores the fluorescence signals. We applied our screening method to sites D135 and R210 in the Escherichia coli AlkB protein and identified a variant with improved activity beyond a previously known hyperactive mutant toward N1-methylguanosine (m1G) in RNA. We also applied our method to O6-methylguanosine (O6mG) modified DNA substrates and identified candidate AlkB variants with demethylating activity. Our study provides a high-throughput screening method for in vitro evolution of any demethylase enzyme.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhou Fang ◽  
Junjian Chen ◽  
Ye Zhu ◽  
Guansong Hu ◽  
Haoqian Xin ◽  
...  

AbstractPeptides are widely used for surface modification to develop improved implants, such as cell adhesion RGD peptide and antimicrobial peptide (AMP). However, it is a daunting challenge to identify an optimized condition with the two peptides showing their intended activities and the parameters for reaching such a condition. Herein, we develop a high-throughput strategy, preparing titanium (Ti) surfaces with a gradient in peptide density by click reaction as a platform, to screen the positions with desired functions. Such positions are corresponding to optimized molecular parameters (peptide densities/ratios) and associated preparation parameters (reaction times/reactant concentrations). These parameters are then extracted to prepare nongradient mono- and dual-peptide functionalized Ti surfaces with desired biocompatibility or/and antimicrobial activity in vitro and in vivo. We also demonstrate this strategy could be extended to other materials. Here, we show that the high-throughput versatile strategy holds great promise for rational design and preparation of functional biomaterial surfaces.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1483
Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A–G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-existing immunity detected across screened populations. However, many aspects of the basic virology of species D—such as their cellular tropism, receptor usage, and in vivo biodistribution profile—remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)—a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 726
Author(s):  
Franz Stocker ◽  
Melanie M. Obermeier ◽  
Katharina Resch ◽  
Gabriele Berg ◽  
Christina A. Müller Bogotá

The ever-growing spread of resistance in medicine and agriculture highlights the need to identify new antimicrobials. Microbial volatile organic compounds (VOCs) are one of the most promising groups of chemicals to meet this need. These rarely exploited molecules exhibit antimicrobial activity and their high vapour pressure makes them ideal for application in surface sterilisation, and in particular, in biofumigation. Therefore, we adapted the previously developed Two Clamp VOCs Assay (TCVA) to a new high-throughput screening for the detection of novel antifungal VOCs from metagenomic clone libraries. As a proof of concept, we tested the new high-throughput TCVA (htTCVA) by sourcing a moss metagenomic library against Fusarium culmorum. This led to the identification of five clones that inhibited the growth of mycelium and spores in vitro by up to 8% and 30% and subsequently, to the identification of VOCs that are potentially, and in part responsible for the clones’ antifungal activity. For these VOCs, the in vitro effect of the pure compounds was as high as 100%. These results demonstrate the robustness and feasibility of the htTCVA, which provides access to completely new and unexplored biosynthetic pathways and their secondary metabolites.


2009 ◽  
Vol 2 ◽  
pp. JCD.S3660
Author(s):  
Hang Fai Kwok ◽  
Julie A. Gormley ◽  
Christopher J. Scott ◽  
James A. Johnston ◽  
Shane A. Olwill

The study of death receptor family induced apoptosis has gained momentum in recent years with the knowledge that therapeutic antibodies targeting DR4 and DR5 (death receptor's 4 and 5) have proved efficacious in multiple clinical trials. The therapeutic rationale is based on targeting and amplifying a tumour tissues normal cell death programme (apoptosis). While advances in the targeting of DR4 and DR5 have been successful the search for an agonistic antibody to another family member, the Fas receptor, has proven more elusive. This is partly due to the differing in vitro and in vivo characteristics of individual antibodies. In order to induce Fas targeted cell death an antibody must be capable of binding to and trimerising the receptor. It has been shown that antibodies capable of performing this function in vivo, with the assistance of tumour associated cells, do not always induce apoptosis in vitro. As a result the use of current methodologies to detect functional antibodies in vitro may have dismissed potential therapeutic candidates ('false negative'). Here we report a novel high throughput screening technique which artificially cross-links antibodies bound to the Fas receptor. By combining this process with Annexin-V and Prodidium Iodide (PI) staining we can select for antibodies which have the potential to induce apoptosis in vivo.


2013 ◽  
Vol 62 (10) ◽  
pp. 1601-1608 ◽  
Author(s):  
Renee A. Marcsisin ◽  
Thanatchaporn Bartpho ◽  
Dieter M. Bulach ◽  
Amporn Srikram ◽  
Rasana W. Sermswan ◽  
...  

The molecular basis for leptospirosis infection and colonization remains poorly understood, with no efficient methods available for screening libraries of mutants for attenuation. We analysed the attenuation of leptospiral transposon mutants in vivo using a high-throughput method by infecting animals with pooled sets of transposon mutants. A total of 95 mutants was analysed by this method in the hamster model of acute infection, and one mutant was identified as attenuated (M1233, lb058 mutant). All virulence factors identified in Leptospira to date have been characterized in the acute model of infection, neglecting the carrier host. To address this, a BALB/c mouse colonization model was established. The lb058 mutant and two mutants defective in LPS synthesis were colonization deficient in the mouse model. By applying the high-throughput screening method, a further five colonization-deficient mutants were identified for the mouse model; these included two mutants in genes encoding proteins with a predicted role in iron uptake (LB191/HbpA and LB194). Two attenuated mutants had transposon insertions in either la0589 or la2786 (encoding proteins of unknown function). The final attenuated mutant had an unexpected deletion of genes la0969–la0975 at the point of transposon insertion. This is the first description of defined, colonization-deficient mutants in a carrier host for Leptospira. These mutants were either not attenuated or only weakly attenuated in the hamster model of acute leptospirosis, thus illustrating that different factors that may be required in the carrier and acute models of leptospiral infection. High-throughput screening can reduce the number of animals used in virulence studies and increase the capacity to screen mutants for attenuation, thereby enhancing the likelihood of detecting unique virulence factors. A comparison of virulence factors required in the carrier and acute models of infection will help to unravel colonization and dissemination mechanisms of leptospirosis.


2004 ◽  
Vol 9 (8) ◽  
pp. 687-694 ◽  
Author(s):  
Yoonsuk Lee ◽  
Dong-Ku Kang ◽  
Soo-Ik Chang ◽  
Moon Hi Han ◽  
In-Cheol Kang

Protein microarray is an emerging technology that makes high-throughput analysis possible for protein-protein interactions and analysis of proteome and biomarkers in parallel. The authors investigated the application of a novel protein microarray chip, Proteo Chip, in new drug discovery. Integrin αvβ3 microarray immobilized on the Proteo Chip was employed to screen new active peptides against the integrin from multiple hexapeptide sublibraries of a positional scanning synthetic peptide combinatorial library (PS-SPCL). The integrin αvβ3-vitronectin interaction was successfully demonstrated on the integrin microarray in a dose-dependent manner andwas inhibited not only by the syntheticRGDpeptide but also by various integrin antagonists on the integrin microarray chip. Novel peptide ligands with high affinity to the integrin were also identified from the peptide libraries with this chip-based screening system by a competitive inhibition assay in a simultaneous and highthroughput fashion. The authors have confirmed antiangiogenic functions of the novel peptides thus screened through an in vitro and in vivo angiogenesis assay. These results provide evidence that the Proteo Chip is a promising tool for highthroughput screening of lead molecules in new drug development.


2020 ◽  
Vol 16 (1) ◽  
pp. 13-23
Author(s):  
Nazmina Vhora ◽  
Ujjal Naskar ◽  
Aishwarya Hiray ◽  
Abhijeet S. Kate ◽  
Alok Jain

BACKGROUND: A higher rate of attenuation of molecules in drug discovery has enabled pharmaceutical companies to enhance the efficiency of their hit identification and lead optimization. Selection and development of appropriate in-vitro and in-vivo strategies may improve this process as primary and secondary screening utilize both strategies. In-vivo approaches are too relentless and expensive for assessing hits. Therefore, it has become indispensable to develop and implement suitable in-vitro screening methods to execute the required activities and meet the respective targets. However, the selection of an appropriate in-vitro assay for specific evaluation of cellular activity is no trivial task. It requires thorough investigation of the various parameters involved. AIM: In this review, we aim to discuss in-vitro assays for type 2 diabetes (T2D), which have been utilized extensively by researchers over the last five years, including target-based, non-target based, low-throughput, and high-throughput screening assays. METHODS: The literature search was conducted using databases including Scifinder, PubMed, ScienceDirect, and Google Scholar to find the significant published articles. DISCUSSION and CONCLUSION: The accuracy and relevance of in-vitro assays have a significant impact on the drug discovery process for T2D, especially in assessing the antidiabetic activity of compounds and identifying the site of effect in high-throughput screening. The report reviews the advantages, limitations, quality parameters, and applications of the probed invitro assays, and compares them with one another to enable the selection of the optimal method for any purpose. The information on these assays will accelerate numerous procedures in the drug development process with consistent quality and accuracy.


2020 ◽  
Author(s):  
Quan Liu ◽  
Xuxu Yu ◽  
Minjie Yang ◽  
Xiangke Li ◽  
Xuejia Zhai ◽  
...  

Abstract Abstract Background Hepatocellular carcinoma (HCC) is one of the cancers of highest incidence and mortality worldwide. The proliferation and invasion of tumor cells are the main reason for poor prognosis after HCC surgery. Long non-coding RNA (lncRNA) has been shown to play a key role in the progression of HCC. LncRNA-CR594175 is one of the highly expressed lncRNAs in HCC tumors and their metastatic tumors that we have obtained by the High-throughput screening method.Methods To elucidate the role of lncRNA-CR594175 in regulating the proliferation and invasion of human hepatoma cell line, HepG2, we operated through lncRNA-CR594175 silencing to inhibit the progression of HCC, either through in vitro or in vivo experiments.Results We found that lncRNA-CR594175 was lower in adjacent non-cancerous tissues than in primary HCC, and was lower in primary HCC than in its metastasis. Silencing of lncRNA-CR594175 inhibited the proliferation and invasion of HepG2 cells and growth of subcutaneous tumors. The results revealed that lncRNA-CR594175, as a RNA sponge, broke the negative regulation of hsa-miR-142-3p on Catenin, beta-1 (CTNNB1), and once lncRNA-CR594175 was silenced, the hsa-miR142-3p regained its negative regulation on CTNNB1 which can promote HCC progression by activating the wnt pathway. Conclusions Our present study demonstrated for the first time that lncRNA-CR594175 silencing suppressed proliferation and invasion of HCC cells in vivo and in vitro by restoring the negative regulation of hsa-miR-142-3p on CTNNB1, laying a solid theoretical base for using lncRNA-CR594175 as genetic target therapy for HCC and offering a reasonable explanation for inactivation of miRNA in different tumors or in the tumor at different stages.


Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A-G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of preexisting immunity detected across screened populations. However, many aspects of the basic virology of species D, such as their cellular tropism, receptor usage and in vivo biodistribution profile, remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49), a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen whilst avoiding liver interactions, such as intravascular vaccine applications.


Sign in / Sign up

Export Citation Format

Share Document