scholarly journals A Cell-Based PDE4 Assay in 1536-Well Plate Format for High-Throughput Screening

2008 ◽  
Vol 13 (7) ◽  
pp. 609-618 ◽  
Author(s):  
Steven A. Titus ◽  
Xiao Li ◽  
Noel Southall ◽  
Jianming Lu ◽  
James Inglese ◽  
...  

The cyclic nucleotide phosphodiesterases (PDEs) are intracellular enzymes that catalyze the hydrolysis of 3,′5′-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5′nucleotide monophosphates. These enzymes play an important role in controlling cellular concentrations of cyclic nucleotides and thus regulate a variety of cellular signaling events. PDEs are emerging as drug targets for several diseases, including asthma, cardiovascular disease, attention-deficit hyperactivity disorder, Parkinson's disease, and Alzheimer's disease. Although biochemical assays with purified recombinant PDE enzymes and cAMP or cGMP substrate are commonly used for compound screening, cell-based assays would provide a better assessment of compound activity in a more physiological context. The authors report the development and validation of a new cell-based PDE4 assay using a constitutively active G-protein—coupled receptor as a driving force for cAMP production and a cyclic nucleotide—gated cation channel as a biosensor in 1536-well plates. ( Journal of Biomolecular Screening 2008:609-618)

1977 ◽  
Vol 74 (3) ◽  
pp. 928-939 ◽  
Author(s):  
I I Geschwind ◽  
J M Horowitz ◽  
G M Mikuckis ◽  
R D Dewey

Selective dispersion of melanosomes was often observed after iontophoretic injection of cyclic adenosine monophosphate (AMP) from a glass microelectrode positioned in a target melanophore in frog skin (as viewed from above through a microscope), with other melanophores in the field serving as controls. Because the skin has orderly arrays of several types of closely spaced cells, it is probable that at times the microelectrode also impales cells other than melanophores. When cyclic AMP injection inside a cell resulted in dispersion of melanosomes from a perinuclear position into dendritic processes, the onset of dispersion was relatively rapid, in many cases less than 4 min (mean time of onset, 5.3 +/- 2.9 [SD] min). A much slower dispersion (mean time of onset, 19.0 +/- 5.0 min) of melanosomes was observed when the microelectrode was positioned adjacent to a melanophore, and much larger quantities of cyclic AMP were released. In addition, no changes were observed for injections of 5'-AMP or cyclic guanosine monophosphate (GMP) through electrodes positioned inside or adjacent to melanophores. Potential measurements showed that after impaling a clell, a constant transmembrane potential could often be recorded over many minutes, indicating that the membrane tends to seal around the microelectrode. The results indicate that cyclic AMP acts more rapidly on the inside of a cell than when applied outside a cell and allowed to diffuse through the plasma membrane. This study introduces a model system whereby the properties of the plasma membrane and melanocyte-stimulating hormone (MSH) receptors can be studies within a single target cell.


2014 ◽  
Vol 121 (2) ◽  
pp. 372-382 ◽  
Author(s):  
Wiebke Kallenborn-Gerhardt ◽  
Ruirui Lu ◽  
Aaron Bothe ◽  
Dominique Thomas ◽  
Jessica Schlaudraff ◽  
...  

Abstract Background: Phosphodiesterase 2A (PDE2A) is an evolutionarily conserved enzyme that catalyzes the degradation of the cyclic nucleotides, cyclic adenosine monophosphate, and/or cyclic guanosine monophosphate. Recent studies reported the expression of PDE2A in the dorsal horn of the spinal cord, pointing to a potential contribution to the processing of pain. However, the functions of PDE2A in spinal pain processing in vivo remained elusive. Methods: Immunohistochemistry, laser microdissection, and quantitative real-time reverse transcription polymerase chain reaction experiments were performed to characterize the localization and regulation of PDE2A protein and messenger RNA in the mouse spinal cord. Effects of the selective PDE2A inhibitor, BAY 60–7550 (Cayman Chemical, Ann Arbor, MI), in animal models of inflammatory pain (n = 6 to 10), neuropathic pain (n = 5 to 6), and after intrathecal injection of cyclic nucleotides (n = 6 to 8) were examined. Also, cyclic adenosine monophosphate and cyclic guanosine monophosphate levels in spinal cord tissues were measured by liquid chromatography tandem mass spectrometry. Results: The authors here demonstrate that PDE2A is distinctly expressed in neurons of the superficial dorsal horn of the spinal cord, and that its spinal expression is upregulated in response to hind paw inflammation. Administration of the selective PDE2A inhibitor, BAY 60–7550, increased the nociceptive behavior of mice in animal models of inflammatory pain. Moreover, BAY 60–7550 increased the pain hypersensitivity induced by intrathecal delivery of cyclic adenosine monophosphate, but not of cyclic guanosine monophosphate, and it increased the cyclic adenosine monophosphate levels in spinal cord tissues. Conclusion: Our findings indicate that PDE2A contributes to the processing of inflammatory pain in the spinal cord.


1989 ◽  
Vol 9 (3) ◽  
pp. 256-263 ◽  
Author(s):  
Joseph E. Brayden ◽  
George C. Wellman

The objective of this study was to characterize the role of membrane potential and cyclic nucleotides in endothelium-dependent dilation of cerebral arteries. Middle cerebral arteries isolated from cats were depolarized and constricted in response to serotonin or when subjected to transmural pressures >50 mm Hg. Acetylcholine (ACh) and ADP caused vasodilation and a sustained, dose-dependent hyperpolarization of up to 20 mV in this artery. The membrane potential change preceded the vasodilation by ∼6 s. Hyperpolarizations and dilations to ACh and ADP did not occur in preparations without endothelium. The hyperpolarizations were abolished by ouabain (10−5 M), which also blocked the dilator response to ACh. However, dilations to ADP were unaffected by ouabain. Methylene blue (5 × 10−5 M), a guanylate cyclase inhibitor, had no effect on the responses to ACh or ADP in the presence or absence of ouabain. Cyclic guanosine monophosphate (cGMP) levels were not altered in cerebral arteries exposed to ACh or ADP. However, ADP did increase cyclic adenosine monophosphate levels in these blood vessels. We conclude that although membrane hyperpolarizations may be adequate to cause vasodilation, at least one other pathway of endothelium-dependent vasodilation also is present in feline cerebral arteries. Cyclic GMP does not appear to be involved in this alternate pathway of dilation.


2019 ◽  
Vol 18 (1) ◽  
pp. 34-38
Author(s):  
Chen Lei ◽  
Pan Xiang ◽  
Shen Yonggang ◽  
Song Kai ◽  
Zhong Xingguo ◽  
...  

The aim of this study was to determine whether polydatin, a glucoside of resveratrol isolated from the root of Polygonum cuspidatum, warranted development as a potential therapeutic for ameliorating the pain originating from gallbladder spasm disorders and the underlying mechanisms. Guinea pig gallbladder smooth muscles were treated with polydatin and specific inhibitors to explore the mechanisms underpinning polydatin-induced relaxation of carbachol-precontracted guinea pig gallbladder. Our results shown that polydatin relaxed carbachol-induced contraction in a dose-dependent manner through the nitric oxide/cyclic guanosine monophosphate/protein kinase G and the cyclic adenosine monophosphate/protein kinase A signaling pathways as well as the myosin light chain kinase and potassium channels. Our findings suggested that there was value in further exploring the potential therapeutic use of polydatin in gallbladder spasm disorders.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yijia Zeng ◽  
Tingna Li ◽  
Xiaorui Zhang ◽  
Yuanyuan Ren ◽  
Qinwan Huang ◽  
...  

Objective. Modern research shows that Haima Duobian pill (HDP) can relieve the kidney yang deficiency syndrome (KYDS), but the mechanism is still unclear. The aim of this work was to study the effects of HDP in a rat model of KYDS. Materials and Methods. The network pharmacology methods were used to predict the therapeutic effects of Haima Duobian pill. Adenine was used to establish the rat model of kidney yang deficiency syndrome. The general physical signs of rats were observed after different doses of Haima Duobian pill (HDP) were given. Serum cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone (T), estradiol (E2), and gonadotropin-releasing hormone (GnRH) levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Then, the histopathologic changes and sperm activity were detected. Results. HDP could improve the general signs of kidney yang deficiency syndrome rats. After the rats were treated with HDP, the expression of cGMP and E2 was significantly inhibited and the expression of cAMP and T was significantly increased. The pathological damage of testis, epididymis, and seminal vesicle was alleviated, and the sperm activity was improved. Conclusion. For adenine-induced kidney yang deficiency syndrome in rats, HDP had a significant therapeutic effect.


2013 ◽  
Vol 25 (1) ◽  
pp. 277
Author(s):  
K. R. L. Schwarz ◽  
M. R. Chiaratti ◽  
L. G. Mesquita ◽  
C. L. V. Leal

Nitric oxide is a chemical messenger generated by the activity of the enzyme NO synthase (NOS) and has been implicated in the control of oocyte maturation. Nitric oxide stimulates guanylate cyclase (GC) to produce cyclic guanosine monophosphate (cGMP), which in turn activates cGMP-dependent protein kinase (PKG) and some phosphodiesterases (PDE) that may interfere with cyclic adenosine monophosphate (cAMP) levels, a nucleotide also involved in meiosis resumption. In a previous study, we found that increasing NO levels in the presence of a NO donor (S-nitroso-N-acetylpenicillamine, SNAP) resulted in a delayed resumption of meiosis and a lower rate of germinal vesicle breakdown after 9 h of in vitro maturation. A temporary increase in cGMP levels was also observed with the same treatment, which was reversed by inhibiting GC activity with oxadiazolo-quinoxaline-one (ODQ; unpublished data). These results suggest that NO acted via GC/cGMP and that even a temporary increase in the cGMP level led to a delay of meiosis resumption. The aim of the present study was to determine the role played by NO on the expression of genes encoding for enzymes of the NO/GC/cGMP and cAMP pathways during the first 9 h of oocyte maturation. Cumulus–oocyte complexes were in vitro matured for 9 h in a semi-defined medium (TCM-199 + 3 mg mL–1 of BSA) with 10 to 7 M SNAP associated or not associated with 100 µM ODQ, a GC inhibitor. A group of oocytes incubated in the absence of inhibitors was considered the control. Total RNA was extracted from pools of 20 denuded oocytes with TRIzol (Life Technologies, Grand Island, NY, USA) and reverse transcribed into complementary DNA using a high-capacity reverse transcription kit (Applied Biosystems, Foster City, CA, USA). Quantitative PCR was performed by real-time PCR using SYBR Green (Applied Biosystems). The genes that had their expression measured pertained to one of the following groups: 1) genes encoding for enzymes that synthesise NO (NOS2 and NOS3); 2) genes involved in the control of cGMP levels (GUCY1B3 and PDE5A) or the enzymes activated by it (PKG1 and PKG2); or 3) genes involved in the control of cAMP levels (ADCY3, ADCY6, ADCY9, PDE3A, and PDE8A) or one of the enzymes activated by it (PKA1). GAPDH and PPIA were selected as housekeeping genes using qbasePLUS version 2.3 (Biogazelle, Zwijnaarde, Belgium). Data from 5 replicates were analysed using LinRegPCR version 11.1 and SAS version 9.2 (SAS Institute Inc., Cary, NC, USA). All genes were found to be expressed in the three experimental groups; however, a significant difference in gene expression levels was not found among groups. Results suggest that NO does not act on oocyte maturation by affecting the expression of the investigated genes in oocytes. To our knowledge, this is the first report to demonstrate the expression of the ADCY3, ADCY6, and ADCY9 genes in bovine oocytes. Further research is in progress to study the effect of the SNAP treatment on the expression of these genes in cumulus cells. Financial support from FAPESP 2010/18023-9.


Author(s):  
Ulrike Schmidt

Second messengers such as cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), inositoltriphosphate, and diacylglycerol (DAG) are a prerequisite for the signal transduction of extracellular receptors. The latter are central for cellular function and thus are implicated in the pathobiology of a variety of disorders, such as schizophrenia, bipolar disorder, major depression, and post-traumatic stress disorder (PTSD). This chapter focuses on the involvement of second messenger molecules and their regulators as direct targets in human and animal PTSD and aims to stimulate the underdeveloped research in this field. The synthesis of literature reveals that second messengers clearly play a central role in PTSD-associated brain regions and processes. In particular, pituitary adenylate cyclase-activating polypeptide (PACAP), an important regulator of intracellular cAMP levels, as well as protein kinase c, the major target of DAG, belong to the hitherto most promising PTSD candidate molecules directly involved in second messenger signaling.


Cephalalgia ◽  
2019 ◽  
Vol 39 (14) ◽  
pp. 1776-1788 ◽  
Author(s):  
Samaira Younis ◽  
Casper E Christensen ◽  
Nikolaj M Toft ◽  
Thomas Søborg ◽  
Faisal M Amin ◽  
...  

Objective Migraine displays clinical heterogeneity of attack features and attack triggers. The question is whether this heterogeneity is explained by distinct intracellular signaling pathways leading to attacks with distinct clinical features. One well-known migraine-inducing pathway is mediated by cyclic adenosine monophosphate and another by cyclic guanosine monophosphate. Calcitonin gene-related peptide triggers migraine via the cyclic adenosine monophosphate pathway and sildenafil via the cyclic guanosine monophosphate pathway. To date, no studies have examined whether migraine induction mediated via the cyclic adenosine monophosphate and cyclic guanosine monophosphate pathways yields similar attacks within the same patients. Methods Patients were subjected to migraine induction on two separate days using calcitonin gene-related peptide (1.5 µg/min for 20 minutes) and sildenafil (100 mg) in a double-blind, randomized, double-dummy, cross-over design. Data on headache intensity, characteristics and accompanying symptoms were collected until 24 hours after drug administration. Results Thirty-four patients were enrolled and 27 completed both study days. Seventeen patients developed migraine after both study drugs (63%; 95% CI: 42–81). Eight patients developed migraine on one day only (seven after sildenafil and one after calcitonin gene-related peptide). Two patients did not develop migraine on either day. Headache laterality, nausea, photophobia and phonophobia were similar between drugs in 77%, 65%, 100%, and 94%, respectively, of the 17 patients who developed attacks on both days. Conclusion A majority of patients developed migraine after both calcitonin gene-related peptide and sildenafil. This supports the hypothesis that the cyclic adenosine monophosphate and cyclic guanosine monophosphate intracellular signaling pathways in migraine induction converge in a common cellular determinator, which ultimately triggers the same attacks. Trial registration: ClinicalTrials.gov Identifier: NCT03143465.


Sign in / Sign up

Export Citation Format

Share Document