scholarly journals Evaluation of the Cytopathicity (Fusion/Hemifusion) of Patient-Derived HIV-1 Envelope Glycoproteins Comparing Two Effector Cell Lines

2012 ◽  
Vol 17 (6) ◽  
pp. 727-737 ◽  
Author(s):  
Francesc Cunyat ◽  
Marta Curriu ◽  
Silvia Marfil ◽  
Elisabet García ◽  
Bonaventura Clotet ◽  
...  

HIV-1 envelope glycoprotein (Env) is a major determinant of viral pathogenicity. The evaluation of the biological properties of patient-derived envelopes by comparing two effector cell lines (293T and HeLa) is reported. A standard cell-to-cell fusion assay was used to evaluate fusogenicity, whereas a coculture with CD4+ cells was used to evaluate absolute cell loss, single cell death, and hemifusion events. Fusion and absolute cell loss assays showed that Env-expressing 293T and HeLa cells had different fusion efficiencies; fusion was magnified in 293T cells despite a significantly lower cell-surface Env expression. Conversely, gp41-mediated single cell death and hemifusion induced in CD4+ cells by 293T-Env-positive cells were significantly lower than that induced by HeLa-Env-positive cells. These data showed that the effector cell line used in the in vitro assays is crucial, and a combination of assays is recommended to evaluate the biological properties of patient-derived envelope glycoproteins: preferentially, 293T-Env-positive cells for the evaluation of fusogenicity and HeLa-Env-positive cells for the evaluation of cell death parameters. The combination of assays described in our work could be a valuable tool for dual screenings of large collections of primary Envs or Env mutants and drugs acting on these Envs.

2019 ◽  
Vol 19 (2) ◽  
pp. 112-119 ◽  
Author(s):  
Mariana B. de Oliveira ◽  
Luiz F.G. Sanson ◽  
Angela I.P. Eugenio ◽  
Rebecca S.S. Barbosa-Dantas ◽  
Gisele W.B. Colleoni

Introduction:Multiple myeloma (MM) cells accumulate in the bone marrow and produce enormous quantities of immunoglobulins, causing endoplasmatic reticulum stress and activation of protein handling machinery, such as heat shock protein response, autophagy and unfolded protein response (UPR).Methods:We evaluated cell lines viability after treatment with bortezomib (B) in combination with HSP70 (VER-15508) and autophagy (SBI-0206965) or UPR (STF- 083010) inhibitors.Results:For RPMI-8226, after 72 hours of treatment with B+VER+STF or B+VER+SBI, we observed 15% of viable cells, but treatment with B alone was better (90% of cell death). For U266, treatment with B+VER+STF or with B+VER+SBI for 72 hours resulted in 20% of cell viability and both treatments were better than treatment with B alone (40% of cell death). After both triplet combinations, RPMI-8226 and U266 presented the overexpression of XBP-1 UPR protein, suggesting that it is acting as a compensatory mechanism, in an attempt of the cell to handle the otherwise lethal large amount of immunoglobulin overload.Conclusion:Our in vitro results provide additional evidence that combinations of protein homeostasis inhibitors might be explored as treatment options for MM.


1997 ◽  
Vol 272 (13) ◽  
pp. 8836
Author(s):  
Etienne Decroly ◽  
Sandrine Wouters ◽  
Carlo Di Bello ◽  
Claude Lazure ◽  
Jean-Marie Ruysschaert ◽  
...  
Keyword(s):  

Oncogene ◽  
2002 ◽  
Vol 21 (30) ◽  
pp. 4613-4625 ◽  
Author(s):  
Karuppiah Muthumani ◽  
Donghui Zhang ◽  
Daniel S Hwang ◽  
Sagar Kudchodkar ◽  
Nathanael S Dayes ◽  
...  

2004 ◽  
Vol 52 (5) ◽  
pp. 335-344 ◽  
Author(s):  
Naomi Gronich ◽  
Liat Drucker ◽  
Hava Shapiro ◽  
Judith Radnay ◽  
Shai Yarkoni ◽  
...  

BackgroundAccumulating reports indicate that statins widely prescribed for hypercholesteromia have antineoplastic activity. We hypothesized that because statins inhibit farnesylation of Ras that is often mutated in multiple myeloma (MM), as well as the production of interleukin (IL)-6, a key cytokine in MM, they may have antiproliferative and/or proapoptotic effects in this malignancy.MethodsU266, RPMI 8226, and ARH77 were treated with simvastatin (0-30 μM) for 5 days. The following aspects were evaluated: viability (IC50), cell cycle, cell death, cytoplasmic calcium ion levels, supernatant IL-6 levels, and tyrosine kinase activity.ResultsExposure of all cell lines to simvastatin resulted in reduced viability with IC50s of 4.5 μM for ARH77, 8 μM for RPMI 8226, and 13 μM for U266. The decreased viability is attributed to cell-cycle arrest (U266, G1; RPMI 8226, G2M) and cell death. ARH77 underwent apoptosis, whereas U266 and RPMI 8226 displayed a more necrotic form of death. Cytoplasmic calcium levels decreased significantly in all treated cell lines. IL-6 secretion from U266 cells was abrogated on treatment with simvastatin, whereas total tyrosine phosphorylation was unaffected.ConclusionsSimvastatin displays significant antimyeloma activity in vitro. Further research is warranted for elucidation of the modulated molecular pathways and clinical relevance.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi222-vi222
Author(s):  
Breanna Mann ◽  
Noah Bell ◽  
Denise Dunn ◽  
Scott Floyd ◽  
Shawn Hingtgen ◽  
...  

Abstract Brain cancers remain one of the greatest medical challenges. The lack of experimentally tractable models that recapitulate brain structure/function represents a major impediment. Platforms that enable functional testing in high-fidelity models are urgently needed to accelerate the identification and translation of therapies to improve outcomes for patients suffering from brain cancer. In vitro assays are often too simple and artificial while in vivo studies can be time-intensive and complicated. Our live, organotypic brain slice platform can be used to seed and grow brain cancer cell lines, allowing us to bridge the existing gap in models. These tumors can rapidly establish within the brain slice microenvironment, and morphologic features of the tumor can be seen within a short period of time. The growth, migration, and treatment dynamics of tumors seen on the slices recapitulate what is observed in vivo yet is missed by in vitro models. Additionally, the brain slice platform allows for the dual seeding of different cell lines to simulate characteristics of heterogeneous tumors. Furthermore, live brain slices with embedded tumor can be generated from tumor-bearing mice. This method allows us to quantify tumor burden more effectively and allows for treatment and retreatment of the slices to understand treatment response and resistance that may occur in vivo. This brain slice platform lays the groundwork for a new clinically relevant preclinical model which provides physiologically relevant answers in a short amount of time leading to an acceleration of therapeutic translation.


1994 ◽  
Vol 180 (4) ◽  
pp. 1547-1552 ◽  
Author(s):  
M G Cifone ◽  
R De Maria ◽  
P Roncaioli ◽  
M R Rippo ◽  
M Azuma ◽  
...  

Intracellular pathways leading from membrane receptor engagement to apoptotic cell death are still poorly characterized. We investigated the intracellular signaling generated after cross-linking of CD95 (Fas/Apo-1 antigen), a broadly expressed cell surface receptor whose engagement results in triggering of cellular apoptotic programs. DX2, a new functional anti-CD95 monoclonal antibody was produced by immunizing mice with human CD95-transfected L cells. Crosslinking of CD95 with DX2 resulted in the activation of a sphingomyelinase (SMase) in promyelocytic U937 cells, as well as in other human tumor cell lines and in CD95-transfected murine cells, as demonstrated by induction of in vivo sphingomyelin (SM) hydrolysis and generation of ceramide. Direct in vitro measurement of enzymatic activity within CD95-stimulated U937 cell extracts, using labeled SM vesicles as substrates, showed strong SMase activity, which required pH 5.0 for optimal substrate hydrolysis. Finally, all CD95-sensitive cell lines tested could be induced to undergo apoptosis after exposure to cell-permeant C2-ceramide. These data indicate that CD95 cross-linking induces SM breakdown and ceramide production through an acidic SMase, thus providing the first information regarding early signal generation from CD95, and may be relevant in defining the biochemical nature of intracellular messengers leading to apoptotic cell death.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongyu Zhao ◽  
Yu Teng ◽  
Wende Hao ◽  
Jie Li ◽  
Zhefeng Li ◽  
...  

Abstract Background Ovarian cancer was one of the leading causes of female deaths. Patients with OC were essentially incurable and portends a poor prognosis, presumably because of profound genetic heterogeneity limiting reproducible prognostic classifications. Methods We comprehensively analyzed an ovarian cancer single-cell RNA sequencing dataset, GSE118828, and identified nine major cell types. Relationship between the clusters was explored with CellPhoneDB. A malignant epithelial cluster was confirmed using pseudotime analysis, CNV and GSVA. Furthermore, we constructed the prediction model (i.e., RiskScore) consisted of 10 prognosis-specific genes from 2397 malignant epithelial genes using the LASSO Cox regression algorithm based on public datasets. Then, the prognostic value of Riskscore was assessed with Kaplan–Meier survival analysis and time-dependent ROC curves. At last, a series of in-vitro assays were conducted to explore the roles of IL4I1, an important gene in Riskscore, in OC progression. Results We found that macrophages possessed the most interaction pairs with other clusters, and M2-like TAMs were the dominant type of macrophages. C0 was identified as the malignant epithelial cluster. Patients with a lower RiskScore had a greater OS (log-rank P < 0.01). In training set, the AUC of RiskScore was 0.666, 0.743 and 0.809 in 1-year, 3-year and 5-year survival, respectively. This was also validated in another two cohorts. Moreover, downregulation of IL4I1 inhibited OC cells proliferation, migration and invasion. Conclusions Our work provide novel insights into our understanding of the heterogeneity among OCs, and would help elucidate the biology of OC and provide clinical guidance in prognosis for OC patients.


2020 ◽  
Author(s):  
zhichao xue ◽  
Vivian Wai Yan Lui ◽  
Yongshu Li ◽  
Jia Lin ◽  
Chanping You ◽  
...  

Abstract Background: Recent genomic analyses revealed that druggable molecule targets were detectable in approximately 6% of patients with nasopharyngeal carcinoma (NPC). However, a dependency on dysregulated CDK4/6–cyclinD1 pathway signaling is an essential event in the pathogenesis of NPC. In this study, we aimed to evaluate the therapeutic efficacy of a specific CDK4/6 inhibitor, palbociclib, and its compatibility with other chemotherapeutic drugs for the treatment of NPC by using newly established xenograft models and cell lines derived from primary, recurrent, and metastatic NPC. Methods: We evaluated the efficacies of palbociclib monotherapy and concurrent treatment with palbociclib and cisplatin or suberanilohydroxamic acid (SAHA) in NPC cell lines and xenograft models. RNA sequencing was then used to profile the drug response–related pathways. Palbociclib-resistant NPC cell lines were established to determine the potential use of cisplatin as a second-line treatment after the development of palbociclib resistance. We further examined the efficacy of palbociclib treatment against cisplatin-resistant NPC cells. Results: In NPC cells, palbociclib monotherapy was confirmed to induce cell cycle arrest in the G1 phase in vitro . Palbociclib monotherapy also had significant inhibitory effects in all six tested NPC tumor models in vivo , as indicated by substantial reductions in the total tumor volumes and in Ki-67 proliferation marker expression. In NPC cells, concurrent palbociclib treatment mitigated the cytotoxic effect of cisplatin in vitro . Notably, concurrent treatment with palbociclib and SAHA synergistically promoted NPC cell death both in vitro and in vivo . This combination also further inhibited tumor growth by inducing autophagy-associated cell death. NPC cell lines with induced palbociclib or cisplatin resistance remained sensitive to treatment with cisplatin or palbociclib, respectively. Conclusions: Our study findings provide essential support for the use of palbociclib as an alternative therapy for NPC and increase awareness of the effective timing of palbociclib administration with other chemotherapeutic drugs. Our results provide a foundation for the design of first-in-human clinical trials of palbociclib regimens in patients with NPC.


2021 ◽  
Author(s):  
Albebson L. Lim ◽  
Philip Moos ◽  
Christopher D. Pond ◽  
Erica C. Larson ◽  
Laura J. Martins ◽  
...  

AbstractHIV-1 cDNA pre-integration complexes have been shown to persist for weeks in macrophages and to be transcriptionally active. Early and late gene transcripts are produced, along with some viral proteins, yet whole virus is not. While previous work has focused on the transcription and translation of HIV-1 genes; our understanding of cellular milieu that accompanies viral production is incomplete. We have used an in vitro system to model HIV-1 infection of macrophages, and single cell RNA sequencing (scRNA-seq) to compare the transcriptomes of uninfected cells, cells harboring pre-integration HIV-1 complexes (PIC) and those containing integrated provirus and actively making late HIV proteins. These are also compared to control cells, not exposed to virus.Several observations provide new perspective on the effects of HIV-1 transcription from pre-integrated cDNA versus from integrated provirus. First, HIV-1 transcript levels do not necessarily correlate with virus production, cells harboring PIC cDNA have transcript loads comparable to cells transcribing from provirus and making p24, mCherry, and vpu proteins. Second, all HIV-1 transcripts are easily detectable in abundance from PIC cDNA transcription, as is the case with cells transcribing from provirus, although the frequency of PIC cells with detectable gag-pol, tat, env, and nef transcripts is higher than the corresponding frequencies observed for “Provirus cells”. Third, the background transcriptomes of cells harboring pre- integrated HIV-1 cDNA are not otherwise detectably altered from cells not containing any HIV- 1 transcript. Fourth, integration and production of p24, mCherry, and Vpu proteins is accompanied by a switch from transcriptomes characterized by NFkB and AP-1 promoted transcription to a transcriptome characterized by E2F family transcription products. While some of these observations may seem heretical, single cell analysis provides a more nuanced understanding of PIC cDNA transcription and the transcriptomic changes that support HIV-1 protein production from integrated provirus.Author SummarySingle cell analysis is able to distinguish between HIV-1 infected macrophage cells that are transcribing pre-integrated HIV-1 cDNA and those transcribing HIV-1 provirus. Only cells transcribing HIV-1 provirus are making p24, marker mCherry and Vpu proteins, which corresponds with a change in the host cell’s background transcriptome from one expressing viral restriction and immunological response genes to one that is expressing genes associated with cell replication and oxidative phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document