scholarly journals HIV Cell Fusion Assay

2013 ◽  
Vol 19 (1) ◽  
pp. 108-118 ◽  
Author(s):  
Elizabeth B. Smith ◽  
Robert A. Ogert ◽  
David Pechter ◽  
Artjohn Villafania ◽  
Susan J. Abbondanzo ◽  
...  

The health and disease-related biology of the CXCR4 chemokine receptor presents the challenge of finding a small molecule that can bind CXCR4 and block T-cell tropic human immunodeficiency virus type 1 (HIV-1) cell entry, while preserving the ability of CXCR4 to respond to its native ligand, CXCL12. HIV entry into the host cell involves the interaction of the viral envelope glycoprotein gp120 binding to CD4, followed by a rearrangement in gp120, and subsequent interaction with the chemokine receptor CXCR4 or CCR5. These initial events can be re-created in a cell fusion assay that represents a surrogate system, mimicking the early stages of viral entry via these host cell receptors. In the current study, a T-tropic HIV cell fusion assay was established using U2OS cells expressing the envelope glycoprotein gp160 from the T-tropic HIV NL4-3 and HeLa cells expressing CD4 and CXCR4. Detection of the cell fusion event was based on a Gal4/VP16-activated β-lactamase signal and was measured by automated microscopy or laser scanning plate cytometry. Changes in morphology associated with cell fusion were combined with β-lactamase activity to generate results with robust assay statistics in both 384-well and 1536-well plates. Compounds were subsequently characterized by CXCR4 signaling assays to eliminate functional antagonists and allow the identification of a function-sparing HIV entry inhibitor.

2003 ◽  
Vol 8 (4) ◽  
pp. 463-470 ◽  
Author(s):  
Stephen Jenkinson ◽  
David C. Mc Coy ◽  
Sandy A. Kerner ◽  
Robert G. Ferris ◽  
Wendell K. Lawrence ◽  
...  

The initial event by which M-tropic HIV strains gain access to cells is via interaction of the viral envelope protein gp120 with the host cell CCR5 coreceptor and CD4. Inhibition of this event reduces viral fusion and entry into cells in vitro. The authors have employed BacMam baculovirus-mediated gene transduction to develop a cell/cell fusion assay that mimics the HIV viral/cell fusion process and allows high-throughput quantification of this fusion event. The assay design uses human osteosarcoma (HOS) cells stably transfected with cDNAs expressing CCR5, CD4, and long terminal repeat (LTR)-luciferase as the recipient host cell. An HEK-293 cell line transduced with BacMam viral constructs to express the viral proteins gp120, gp41, tat, and rev represents the virus. Interaction of gp120 with CCR5/CD4 results in the fusion of the 2 cells and transfer of tat to the HOS cell cytosol; tat, in turn, binds to the LTR region on the luciferase reporter and activates transcription, resulting in an increase in cellular luciferase activity. In conclusion, the cell/cell fusion assay developed has been demonstrated to be a robust and reproducible high-throughput surrogate assay that can be used to assess the effects of compounds on gp120/CCR5/CD4-mediated viral fusion into host cells.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 238
Author(s):  
Malgorzata Kloc ◽  
Ahmed Uosef ◽  
Jacek Z. Kubiak ◽  
Rafik M. Ghobrial

Human placenta formation relies on the interaction between fused trophoblast cells of the embryo with uterine endometrium. The fusion between trophoblast cells, first into cytotrophoblast and then into syncytiotrophoblast, is facilitated by the fusogenic protein syncytin. Syncytin derives from an envelope glycoprotein (ENV) of retroviral origin. In exogenous retroviruses, the envelope glycoproteins coded by env genes allow fusion of the viral envelope with the host cell membrane and entry of the virus into a host cell. During mammalian evolution, the env genes have been repeatedly, and independently, captured by various mammalian species to facilitate the formation of the placenta. Such a shift in the function of a gene, or a trait, for a different purpose during evolution is called an exaptation (co-option). We discuss the structure and origin of the placenta, the fusogenic and non-fusogenic functions of syncytin, and the mechanism of cell fusion. We also comment on an alleged danger of the COVID-19 vaccine based on the presupposed similarity between syncytin and the SARS-CoV-2 spike protein.


1980 ◽  
Vol 43 (1) ◽  
pp. 103-118
Author(s):  
S. Knutton

The membrane fusion and cell swelling stages of Sendai virus-mediated cell-cell fusion have been studied by thin-section and freeze-fracture electron microscopy. Sites of membrane fusion have been detected in human erythrocytes arrested at the membrane fusion stage of cell fusion and in virtually all cases a fused viral envelope or envelope components has been identified thus providing further direct evidence that cell-viral envelope-cell bridge formation is the membrane fusion event in Sendai virus-induced cell fusion. Radial expansion of a single virus bridge connecting 2 cells is sufficient to produce a fused cell. Membrane redistribution which occurs during this cell swelling stage of the fusion process is often accompanied by the formation of a system of membrane tubules in the plane of expansion of the virus bridge. The tubules originate from points of fusion between the bridging virus envelope and the erythrocyte membrane and also expand radially as cells swell. Ultimately membrane rupture occurs and the tubules appear to break down as small vesicles. When previously observed in cross-sectioned cells these membrane tubules were interpreted as sites of direct membrane fusion. The present study indicates that this interpretation is incorrect and shows that the tubules are generated subsequent to membrane fusion when 2 cells connected by a virus bridge are induced to swell. A mechanism to explain the formation of this system of membrane tubules is proposed.


1986 ◽  
Vol 164 (6) ◽  
pp. 2101-2106 ◽  
Author(s):  
J Lifson ◽  
S Coutré ◽  
E Huang ◽  
E Engleman

Human immunodeficiency virus (HIV) envelope glycoprotein interactions with cell surface CD4 are involved in both virion infectivity and virally mediated cell fusion. D-mannose-specific lectins such as Con A specifically blocked virion infectivity and cell fusion. Studies with a recombinant vaccinia virus containing the HIV envelope gene demonstrated that Con A-mediated inhibition of HIV-induced fusion involved lectin binding to the viral envelope glycoprotein. These results indicate the importance of envelope glycosylation in the pathobiology of HIV infection, and suggest potential mechanisms for interfering with HIV infectivity and cytopathology.


2008 ◽  
Vol 82 (11) ◽  
pp. 5417-5428 ◽  
Author(s):  
Liang Shang ◽  
Ling Yue ◽  
Eric Hunter

ABSTRACT The membrane-spanning domain (MSD) of the human immunodeficiency virus type 1 (HIV-1) gp41 glycoprotein is critical for its biological activity. Previous C-terminal truncation studies have predicted an almost invariant core structure of 12 amino acid residues flanked by basic amino acids in the HIV-1 MSD that function to anchor the glycoprotein in the lipid bilayer. To further understand the role of specific amino acids within the MSD core, we initially replaced the core region with 12 leucine residues and then constructed recovery-of-function mutants in which specific amino acid residues (including a GGXXG motif) were reintroduced. We show here that conservation of the MSD core sequence is not required for normal expression, processing, intracellular transport, and incorporation into virions of the envelope glycoprotein (Env). However, the amino acid composition of the MSD core does influence the ability of Env to mediate cell-cell fusion and plays a critical role in the infectivity of HIV-1. Replacement of conserved amino acid residues with leucine blocked virus-to-cell fusion and subsequent viral entry into target cells. This restriction could not be released by C-terminal truncation of the gp41 glycoprotein. These studies imply that the highly conserved core residues of the HIV Env MSD, in addition to serving as a membrane anchor, play an important role in mediating membrane fusion during viral entry.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 61
Author(s):  
Melina Vallbracht ◽  
Barbara G. Klupp ◽  
Thomas C. Mettenleiter

Envelope glycoprotein (g)B is conserved throughout the Herpesviridae and mediates fusion of the viral envelope with cellular membranes for infectious entry and spread. Like all viral envelope fusion proteins, gB is modified by asparagine (N)-linked glycosylation. Glycans can contribute to protein function, intracellular transport, trafficking, structure and immune evasion. gB of the alphaherpesvirus pseudorabies virus (PrV) contains six consensus sites for N-linked glycosylation, but their functional relevance is unknown. Here, we investigated the occupancy and functional relevance of N-glycosylation sites in PrV gB. To this end, all predicted N-glycosylation sites were inactivated either singly or in combination by the introduction of conservative mutations (N➔Q). The resulting proteins were tested for expression, fusion activity in cell–cell fusion assays and complementation of a gB-deficient PrV mutant. Our results indicate that all six sites are indeed modified. However, while glycosylation at most sites was dispensable for gB expression and fusogenicity, inactivation of N154 and N700 affected gB processing by furin cleavage and surface localization. Although all single mutants were functional in cell–cell fusion and viral entry, simultaneous inactivation of all six N-glycosylation sites severely impaired fusion activity and viral entry, suggesting a critical role of N-glycans for maintaining gB structure and function.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 213
Author(s):  
Soumajit Mukherjee ◽  
Emmanuel Boutant ◽  
Eleonore Réal ◽  
Yves Mély ◽  
Halina Anton

During the last two decades, progresses in bioimaging and the development of various strategies to fluorescently label the viral components opened a wide range of possibilities to visualize the early phase of Human Immunodeficiency Virus 1 (HIV-1) life cycle directly in infected cells. After fusion of the viral envelope with the cell membrane, the viral core is released into the cytoplasm and the viral RNA (vRNA) is retro-transcribed into DNA by the reverse transcriptase. During this process, the RNA-based viral complex transforms into a pre-integration complex (PIC), composed of the viral genomic DNA (vDNA) coated with viral and host cellular proteins. The protective capsid shell disassembles during a process called uncoating. The viral genome is transported into the cell nucleus and integrates into the host cell chromatin. Unlike biochemical approaches that provide global data about the whole population of viral particles, imaging techniques enable following individual viruses on a single particle level. In this context, quantitative microscopy has brought original data shedding light on the dynamics of the viral entry into the host cell, the cytoplasmic transport, the nuclear import, and the selection of the integration site. In parallel, multi-color imaging studies have elucidated the mechanism of action of host cell factors implicated in HIV-1 viral cycle progression. In this review, we describe the labeling strategies used for HIV-1 fluorescence imaging and report on the main advancements that imaging studies have brought in the understanding of the infection mechanisms from the viral entry into the host cell until the provirus integration step.


2007 ◽  
Vol 81 (17) ◽  
pp. 9152-9161 ◽  
Author(s):  
Laura M. Palermo ◽  
Matteo Porotto ◽  
Olga Greengard ◽  
Anne Moscona

ABSTRACT Paramyxoviruses, including the childhood respiratory pathogen human parainfluenza virus type 3 (HPIV3), possess an envelope protein hemagglutinin-neuraminidase (HN) that has receptor-cleaving (neuraminidase), as well as receptor-binding, activity. HN is a type II transmembrane glycoprotein, present on the surface of the virus as a tetramer composed of two dimers. HN is also essential for activating the fusion protein (F) to mediate merger of the viral envelope with the host cell membrane. This initial step of viral entry occurs at the host cell surface at neutral pH. The HN molecule carries out these three different critical activities at specific points in the process of viral entry, and understanding the regulation of these activities is key for the design of strategies that block infection. One bifunctional site (site I) on the HN of HPIV3 possesses both receptor binding and neuraminidase activities, and we recently obtained experimental evidence for a second receptor binding site (site II) on HPIV3 HN. Mutation of HN at specific residues at this site, which is next to the HN dimer interface, confers enhanced fusion properties, without affecting neuraminidase activity or receptor binding at neutral pH. We now demonstrate that mutations at this site II, as well as at site I, confer pH dependence on HN′s receptor avidity. These mutations permit pH to modulate the binding and fusion processes of the virus, potentially providing regulation at specific stages of the viral life cycle.


2000 ◽  
Vol 81 (8) ◽  
pp. 1907-1911 ◽  
Author(s):  
Hartmut Stocker ◽  
Carsten Scheller ◽  
Christian Jassoy

Infection of CD4+ T lymphocytes with human immunodeficiency virus (HIV) in vitro is accompanied by extensive cytopathicity. The mechanism of cell death is unclear, but may be related to expression of the viral envelope glycoprotein. Here, it is demonstrated that T cell destruction in primary T cells occurs upon contact of infected with uninfected lymphocytes. Cell death was due to the interaction of the envelope glycoprotein with CD4 and subsequent fusion of the cells. Agents that interfered with cell-to-cell fusion such as a monoclonal antibody to CD4 and the peptide T20 prevented T cell death and depletion. In contrast, single-cell lysis due to expression and intracellular processing of the envelope glycoprotein was insignificant. These results suggest that cell-to-cell fusion and concomitant rapid cell death promote the depletion of T cells in HIV-infected individuals.


Sign in / Sign up

Export Citation Format

Share Document