scholarly journals Transcriptional Inhibitors Identified in a 160,000-Compound Small-Molecule DUX4 Viability Screen

2016 ◽  
Vol 21 (7) ◽  
pp. 680-688 ◽  
Author(s):  
Si Ho Choi ◽  
Darko Bosnakovski ◽  
Jessica M. Strasser ◽  
Erik A. Toso ◽  
Michael A. Walters ◽  
...  

Facioscapulohumeral muscular dystrophy is a genetically dominant, currently untreatable muscular dystrophy. It is caused by mutations that enable expression of the normally silent DUX4 gene, which encodes a pathogenic transcription factor. A screen based on Tet-on DUX4-induced mouse myoblast death previously uncovered compounds from a 44,000-compound library that protect against DUX4 toxicity. Many of those compounds acted downstream of DUX4 in an oxidative stress pathway. Here, we extend this screen to an additional 160,000 compounds and, using greater stringency, identify a new set of DUX4-protective compounds. From 640 hits, we performed secondary screens, repurchased 46 of the most desirable, confirmed activity, and tested each for activity against other cell death–inducing insults. The majority of these compounds also protected against oxidative stress. Of the 100 repurchased compounds identified through both screens, only SHC40, 75, and 98 inhibited DUX4 target genes, but they also inhibited dox-mediated DUX4 expression. Using a target gene readout on the 640-compound hit set, we discovered three overlooked compounds, SHC351, 540, and 572, that inhibit DUX4 target gene upregulation without nonspecific effects on the Tet-on system. These novel inhibitors of DUX4 transcriptional activity may thus act on pathways or cofactors needed by DUX4 for transcriptional activation in these cells.

2021 ◽  
Author(s):  
pei shengfei ◽  
luming yang ◽  
lin wang ◽  
xuelei gao ◽  
yu guo ◽  
...  

Abstract BackgroundAnti-tuberculosis drug-induced liver injury (ADLI) limits the treatment of tuberculosis. The mechanisms underlying ADLI are unclear and there are no effective preventative measures to avoid this complication. MethodsIn this stuy, the protein contents of EZH2, Nrf2, NQO1 and HO-1 were detected by ELISA kit, while those of EZH2 and Nrf2 were determined by Western blot. The Chip experiment was used to detect the level of H3K27me3 in the Nrf2 promoter region.The liver were analyzed histopathologically in vivo using hematoxylin and eosin staining.ResultsHere we developed a murine model of ADLI that recapitulates liver injury in the human disease. Using this model, we investigated the potential involvement of the enhancer of zeste homolog 2 methyltransferase (EZH2), a histone methyltransferase which inhibits the transcriptional activation of the Nrf2-ARE oxidative stress pathway. Compared to controls, mice livers with ADLI showed decreased expression of EZH2 together with reduced H3K27me3 marks in the Nrf2 promoter. This was accompanied by increased expression of Nrf2 and its target genes NQO1 and HO-1. Liver injury in the mice with ADLI could be alleviated to an extent by in vivo delivery of siRNAs targeting EZH2, which further downregulated EZH2 expression and H3K27me3 levels in the Nrf2 promoter along with accompanying increases in Nrf2, NQO1 and HO-1 expression. ConclusionsTherefore, inhibiting EZH2 likely reduced liver damage in ADLI by enhancing this key anti-oxidative stress pathway. Our results establish a role for EZH2 in a mouse model of ADLI and furthermore provides valuable mechanistic insights into the development of ADLI pathology.


2009 ◽  
Vol 23 (2) ◽  
pp. 102-111 ◽  
Author(s):  
Arun K. Tiwari ◽  
Pushplata Prasad ◽  
Thelma B.K. ◽  
K.M. Prasanna Kumar ◽  
A.C. Ammini ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3322
Author(s):  
Emanuele Mocciaro ◽  
Valeria Runfola ◽  
Paola Ghezzi ◽  
Maria Pannese ◽  
Davide Gabellini

In the last decade, the sequence-specific transcription factor double homeobox 4 (DUX4) has gone from being an obscure entity to being a key factor in important physiological and pathological processes. We now know that expression of DUX4 is highly regulated and restricted to the early steps of embryonic development, where DUX4 is involved in transcriptional activation of the zygotic genome. While DUX4 is epigenetically silenced in most somatic tissues of healthy humans, its aberrant reactivation is associated with several diseases, including cancer, viral infection and facioscapulohumeral muscular dystrophy (FSHD). DUX4 is also translocated, giving rise to chimeric oncogenic proteins at the basis of sarcoma and leukemia forms. Hence, understanding how DUX4 is regulated and performs its activity could provide relevant information, not only to further our knowledge of human embryonic development regulation, but also to develop therapeutic approaches for the diseases associated with DUX4. Here, we summarize current knowledge on the cellular and molecular processes regulated by DUX4 with a special emphasis on FSHD muscular dystrophy.


2020 ◽  
Author(s):  
Jianfeng Li ◽  
Shaoyu Hu ◽  
Song Hao ◽  
Shengjia Huang ◽  
Yi Qin ◽  
...  

Abstract Background The role of gene and pathway in recurrence of Ewing sarcoma (ES) was not clear. Thus, we investigated the biological role and underlying mechanism of gene and pathway in recurrence of ES. Methods Data sets of patients with ES were collected from the GEO database. We used dataset GSE63155 and GSE63156 to construct co-expression networks by weighted gene co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). Results We can find that genes with significant interactions in the genes of the recurrence group include SRSF11, TRIM39, SOCS3,NUPL2,COPS5. They work primarily through the oxidative stress pathway. Conclusion Through our research, for the first time found that ES by SRSF11 TRIM39, SOCS3, NUPL2, COPS5 interaction, activation of phosphorylation of bone and oxidative stress is affecting tumor recurrence.


Autophagy ◽  
2019 ◽  
Vol 16 (5) ◽  
pp. 917-931 ◽  
Author(s):  
Zhiqiang Deng ◽  
Junghyun Lim ◽  
Qian Wang ◽  
Kerry Purtell ◽  
Shuai Wu ◽  
...  

Neurology ◽  
2020 ◽  
Vol 94 (23) ◽  
pp. e2441-e2447 ◽  
Author(s):  
Kohei Hamanaka ◽  
Darina Šikrová ◽  
Satomi Mitsuhashi ◽  
Hiroki Masuda ◽  
Yukari Sekiguchi ◽  
...  

ObjectiveFacioscapulohumeral muscular dystrophy (FSHD) is a heterogenetic disorder predominantly characterized by progressive facial and scapular muscle weakness. Patients with FSHD either have a contraction of the D4Z4 repeat on chromosome 4q35 or mutations in D4Z4 chromatin modifiers SMCHD1 and DNMT3B, both causing D4Z4 chromatin relaxation and inappropriate expression of the D4Z4-encoded DUX4 gene in skeletal muscle. In this study, we tested the hypothesis whether LRIF1, a known SMCHD1 protein interactor, is a disease gene for idiopathic FSHD2.MethodsClinical examination of a patient with idiopathic FSHD2 was combined with pathologic muscle biopsy examination and with genetic, epigenetic, and molecular studies.ResultsA homozygous LRIF1 mutation was identified in a patient with a clinical phenotype consistent with FSHD. This mutation resulted in the absence of the long isoform of LRIF1 protein, D4Z4 chromatin relaxation, and DUX4 and DUX4 target gene expression in myonuclei, all molecular and epigenetic hallmarks of FSHD. In concordance, LRIF1 was shown to bind to the D4Z4 repeat, and knockdown of the LRIF1 long isoform in muscle cells results in DUX4 and DUX4 target gene expression.ConclusionLRIF1 is a bona fide disease gene for FSHD2. This study further reinforces the unifying genetic mechanism, which postulates that FSHD is caused by D4Z4 chromatin relaxation, resulting in inappropriate DUX4 expression in skeletal muscle.


2019 ◽  
Vol 30 (12) ◽  
pp. 1365-1375
Author(s):  
Zhenzhen Zhang ◽  
Duo Jiang ◽  
Chi Wang ◽  
Mark Garzotto ◽  
Ryan Kopp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document