scholarly journals Safety Assessment of Stearyl Heptanoate and Related Stearyl Alkanoates as Used in Cosmetics

2012 ◽  
Vol 31 (5_suppl) ◽  
pp. 141S-146S ◽  
Author(s):  
Monice M. Fiume ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
Curtis D. Klaassen ◽  
...  

Stearyl heptanoate is an ester of stearyl alcohol and heptanoic acid that functions in cosmetics as a skin conditioning agent and is in the general class of chemicals called stearyl alkanoates. Stearyl caprylate, stearyl palmitate, stearyl stearate, stearyl behenate, and stearyl olivate are stearyl alkanoates with similar chemical structures, toxicokinetics, and functions in cosmetics. These water-insoluble stearyl alkanoates, when metabolized, yield stearyl alcohol and a corresponding fatty acid. The available information supports the safety of all of the related stearyl alkanoates. The Expert Panel concluded that stearyl heptanoate, stearyl caprylate, stearyl palmitate, stearyl stearate, stearyl behenate, and stearyl olivate are safe in the present practices of use and concentration.

2015 ◽  
Vol 34 (2_suppl) ◽  
pp. 99S-112S ◽  
Author(s):  
Lillian C. Becker ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
Curtis D. Klaassen ◽  
...  

The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of 16 pentaerythrityl tetraester compounds as used in cosmetics. These ingredients mostly function as hair-conditioning agents, skin-conditioning agents—miscellaneous and binders, skin-conditioning agents–occlusive, viscosity-increasing agents–nonaqueous, and skin-conditioning agents—emollient. The Panel reviewed the available animal and human data related to these ingredients and previous safety assessments of the fatty acid moieties. The Panel concluded that pentaerythrityl tetraisostearate and the other pentaerythrityl tetraester compounds were safe in the practices of use and concentration as given in this safety assessment.


2012 ◽  
Vol 31 (4_suppl) ◽  
pp. 77S-111S ◽  
Author(s):  
Christina L. Burnett ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
Curtis D. Klaassen ◽  
...  

Cocamidopropyl betaine (CAPB) and related amidopropyl betaines are zwitterions used mainly as surfactants in cosmetics. These cosmetic ingredients are similar in their chemistry, in particular with respect to the presence of 3,3-dimethylamino-propylamine (DMAPA) and fatty acid amidopropyl dimethylamine (amidoamine) impurities, which are known as sensitizers. The CIR Expert Panel concluded that because these ingredients present no other significant toxicity, when formulated to be nonsensitizing (which may be based on a quantitative risk assessment), these ingredients are safe for use as cosmetic ingredients in the practices of use and concentration of this safety assessment.


1990 ◽  
Vol 9 (2) ◽  
pp. 153-164 ◽  

Tallow, Tallow Glyceride, Tallow Glycerides, Hydrogenated Tallow Glyceride, and Hydrogenated Tallow Glycerides are used in eye and face makeup preparations and in skin care preparations. Concentrations of use range from ≤0.1 % to > 50%. The fatty acid constituents of Tallow, and some of the corresponding fatty acid alcohols have been evaluated for safety by the Federation of American Societies of Experimental Biology, the Food and Drug Administration, and by an Expert Panel of the Cosmetic Ingredient Review. In all cases, the ingredients were found safe in present practices of use. None of these constituents of Tallow were toxic through oral and dermal exposure, they were not ocular or dermal irritants, and they were neither dermal sensitizers nor photosensitizers. The same was true for other oils which contain varying concentrations of the constituents of Tallow. Based on the CIR safety evaluations of the individual constituents of Tallow and of cosmetic ingredients containing the constituents of Tallow, and on the approval of Tallow for use in foods and other consumer products, it is concluded that Tallow, Tallow Glyceride, Tallow Glycerides, Hydrogenated Tallow Glyceride, and Hydrogenated Tallow Glycerides are safe as cosmetic ingredients in the present practices of use.


2020 ◽  
Vol 39 (2_suppl) ◽  
pp. 59S-90S
Author(s):  
Christina L. Burnett ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
Curtis D. Klaassen ◽  
...  

The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of polyenes, which are reported to function in cosmetics primarily as film formers and viscosity increasing agents. The Panel reviewed relevant data related to these ingredients, not inggaps in the available safety data for some of the polyenes in this safety assessment. The data available for many of the ingredients are sufficient and can be extrapolated to support the safety of the entire group because of the similarities in the chemical structures, chemical properties, use concentrations, and reported functions across the group. The Panel concluded that polyenes were safe in cosmetics in the present practices of use and concentration described in this safety assessment.


2019 ◽  
Vol 38 (1_suppl) ◽  
pp. 39S-69S ◽  
Author(s):  
Christina L. Burnett ◽  
Ivan Boyer ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
...  

The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of fatty acid amidopropyl dimethylamines, which function primarily as antistatic agents in cosmetic products. The relevant animal and human data reviewed for these ingredients indicate that they are potential dermal sensitizers that may be due in part by the sensitizing impurity, 3,3-dimethylaminopropylamine. The Panel concluded that fatty acid amidopropyl dimethylamines were safe as cosmetic ingredients when they are formulated to be nonsensitizing, which may be based on a quantitative risk assessment.


2012 ◽  
Vol 31 (5_suppl) ◽  
pp. 245S-260S ◽  
Author(s):  
Monice M. Fiume ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
Curtis D. Klaassen ◽  
...  

Propylene glycol is an aliphatic alcohol that functions as a skin conditioning agent, viscosity decreasing agent, solvent, and fragrance ingredient in cosmetics. Tripropylene glycol functions as a humectant, antioxidant, and emulsion stabilizer. Polypropylene glycols (PPGs), including PPG-3, PPG-7, PPG-9, PPG-12, PPG-13, PPG-15, PPG-16, PPG-17, PPG-20, PPG-26, PPG-30, PPG-33, PPG-34, PPG-51, PPG-52, and PPG-69, function primarily as skin conditioning agents, with some solvent use. The majority of the safety and toxicity information presented is for propylene glycol (PG). Propylene glycol is generally nontoxic and is noncarcinogenic. Clinical studies demonstrated an absence of dermal sensitization at use concentrations, although concerns about irritation remained. The CIR Expert Panel determined that the available information support the safety of tripropylene glycol as well as all the PPGs. The Expert Panel concluded that PG, tripropylene glycol, and PPGs ≥3 are safe as used in cosmetic formulations when formulated to be nonirritating.


2017 ◽  
Vol 36 (3_suppl) ◽  
pp. 51S-129S ◽  
Author(s):  
Christina L. Burnett ◽  
Monice M. Fiume ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
...  

The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of 244 plant-derived fatty acid oils as used in cosmetics. Oils are used in a wide variety of cosmetic products for their skin conditioning, occlusive, emollient, and moisturizing properties. Since many of these oils are edible, and their systemic toxicity potential is low, the review focused on potential dermal effects. The Panel concluded that the 244 plant-derived fatty acid oils are safe as used in cosmetics.


Author(s):  
Subbiah Latha ◽  
Palanisamy Selvamani ◽  
Thangavelu Prabha

: Natural products have a unique place in the healthcare industry. The genus Commiphora emerged as a potential medicinal with huge benefits as evidenced through its use in various traditional and modern systems of medicine. Therefore, we aimed to prepare a concise review on the pharmacological activities and the indigenous uses of various plant species belonging to the genus Commiphora along with the structural information of various active botanical ingredients present in these plants based on the published literatures and scientific reports. To collect the various published literatures on Commiphora in various journals; to study and classify the available information on the pharmacological uses and chemical constituents; and to present the gathered information as a precise review to serve as a potential reference for future research. Pharmacological and phytochemical data on Commiphora plant species were collected from various journals, books, reference materials, websites including scientific databases, etc for compilation. This review article describes the various pharmacological properties of plants of Commiphora species viz., Anti-arthritic and anti-inflammatory, Anti-atherogenic, Antibacterial, Anti-coagulant, Anti-dicrocoeliasis, Anti-epileptic, Anti-fascioliasis, Anti-fungal, Anti-heterophyidiasis, Anti-hyper cholesterolemic, Anti-hyperlipidemic, Anti-hypothyroidism, Anti-obesity, Anti-osteoarthritic, Anti-osteoclastogenesis, Anti-oxidant, Anti-parasitic, Anti-pyretic, Anti-schistosomiasis, Anti-septic, Anti-thrombotic, Anti-ulcer, Cardioprotective, COX enzyme inhibitory, Cytotoxic /Anti-carcinogenic/Anti-cancer, DNA cleavage, Hypotensive, Inhibits lipid peroxidation, Inhibits NO and NO synthase production, Insecticidal, Local anesthetic, Molluscicidal, Smooth muscle relaxant, Tick repellent activities along with toxicity studies. Furthermore, the review also included various secondary metabolites isolated from various species of Commiphora genus along with their chemical structures serve as a ready resource for researchers. We conclude that the plant species belonging to the genus Commiphora possesses abundant pharmacological properties with a huge treasure of diverse secondary metabolites within themselves. This review indicates the necessity of further in-depth research, pre-clinical and clinical studies with Commiphora genus which may help to detect the unidentified potential of the Commiphora plant species.


2021 ◽  
Vol 22 (9) ◽  
pp. 4808
Author(s):  
Nitza Soto ◽  
Karoll Ferrer ◽  
Katy Díaz ◽  
César González ◽  
Lautaro Taborga ◽  
...  

Brassinosteroids are polyhydroxysteroids that are involved in different plants’ biological functions, such as growth, development and resistance to biotic and external stresses. Because of its low abundance in plants, much effort has been dedicated to the synthesis and characterization of brassinosteroids analogs. Herein, we report the synthesis of brassinosteroid 24-nor-5β-cholane type analogs with 23-benzoate function and 22,23-benzoate groups. The synthesis was accomplished with high reaction yields in a four-step synthesis route and using hyodeoxycholic acid as starting material. All synthesized analogs were tested using the rice lamina inclination test to assess their growth-promoting activity and compare it with those obtained for brassinolide, which was used as a positive control. The results indicate that the diasteroisomeric mixture of monobenzoylated derivatives exhibit the highest activity at the lowest tested concentrations (1 × 10−8 and 1 × 10−7 M), being even more active than brassinolide. Therefore, a simple synthetic procedure with high reaction yields that use a very accessible starting material provides brassinosteroid synthetic analogs with promising effects on plant growth. This exploratory study suggests that brassinosteroid analogs with similar chemical structures could be a good alternative to natural brassinosteroids.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4445
Author(s):  
Tiphaine Wong ◽  
Lorette Brault ◽  
Eric Gasparotto ◽  
Romuald Vallée ◽  
Pierre-Yves Morvan ◽  
...  

Marine polysaccharides are part of the huge seaweeds resources and present many applications for several industries. In order to widen their potential as additives or bioactive compounds, some structural modifications have been studied. Among them, simple hydrophobization reactions have been developed in order to yield to grafted polysaccharides bearing acyl-, aryl-, alkyl-, and alkenyl-groups or fatty acid chains. The resulting polymers are able to present modified physicochemical and/or biological properties of interest in the current pharmaceutical, cosmetics, or food fields. This review covers the chemical structures of the main marine polysaccharides, and then focuses on their structural modifications, and especially on hydrophobization reactions mainly esterification, acylation, alkylation, amidation, or even cross-linking reaction on native hydroxyl-, amine, or carboxylic acid functions. Finally, the question of the necessary requirement for more sustainable processes around these structural modulations of marine polysaccharides is addressed, considering the development of greener technologies applied to traditional polysaccharides.


Sign in / Sign up

Export Citation Format

Share Document