scholarly journals Identification of Metastasis-Associated Genes in Triple-Negative Breast Cancer Using Weighted Gene Co-expression Network Analysis

2020 ◽  
Vol 16 ◽  
pp. 117693432095486
Author(s):  
Wenting Xie ◽  
Zhongshi Du ◽  
Yijie Chen ◽  
Naxiang Liu ◽  
Zhaoming Zhong ◽  
...  

Triple-negative breast cancer (TNBC) is the most aggressive and fatal sub-type of breast cancer. This study aimed to identify metastasis-associated genes that could serve as biomarkers for TNBC diagnosis and prognosis. RNA-seq data and clinical information on TNBC from the Cancer Genome Atlas were used to conduct analyses. Expression data were used to establish co-expression modules using average linkage hierarchical clustering. We used weighted gene co-expression network analysis to explore the associations between gene sets and clinical features and to identify metastasis-associated candidate biomarkers. The K-M plotter website was used to explore the association between the expression of candidate biomarkers and patient survival. In addition, receiver operating characteristic curve analysis was used to illustrate the diagnostic performance of candidate genes. The pale turquoise module was significantly associated with the occurrence of metastasis. In this module, 64 genes were identified, and its functional enrichment analysis revealed that they were mainly associated with transcriptional misregulation in cancer, microRNAs in cancer, and negative regulation of angiogenesis. Further, 4 genes, IGSF10, RUNX1T1, XIST, and TSHZ2, which were negatively associated with relapse-free survival and have seldom been reported before in TNBC, were selected. In addition, the mRNA expression levels of the 4 candidate genes were significantly lower in TNBC tumor tissues compared with healthy tissues. Based on the K-M plotter, these 4 genes were correlated with poor prognosis of TNBC. The area under the curve of IGSF10, RUNX1T1, TSHZ2, and XIST was 0.918, 0.957, 0.977, and 0.749. These findings provide new insight into TNBC metastasis. IGSF10, RUNX1T1, TSHZ2, and XIST could be used as candidate biomarkers for the diagnosis and prognosis of TNBC metastasis.

2021 ◽  
Vol 11 ◽  
Author(s):  
Jiarong Yi ◽  
Wenjing Zhong ◽  
Haoming Wu ◽  
Jikun Feng ◽  
Xiazi Zouxu ◽  
...  

Although the tumor microenvironment (TME) plays an important role in the development of many cancers, its roles in breast cancer, especially triple-negative breast cancer (TNBC), are not well studied. This study aimed to identify genes related to the TME and prognosis of TNBC. Firstly, we identified differentially expressed genes (DEG) in the TME of TNBC, using Expression data (ESTIMATE) datasets obtained from the Cancer Genome Atlas (TCGA) and Estimation of Stromal and Immune cells in Malignant Tumor tissues. Next, survival analysis was performed to analyze the relationship between TME and prognosis of TNBC, as well as determine DEGs. Genes showing significant differences were scored as alternative genes. A protein-protein interaction (PPI) network was constructed and functional enrichment analysis conducted using the DEG. Proteins with a degree greater than 5 and 10 in the PPI network correspond with hub genes and key genes, respectively. Finally, CCR2 and CCR5 were identified as key genes in TME and prognosis of TNBC. Finally, these results were verified using Gene Expression Omnibus (GEO) datasets and immunohistochemistry of TNBC patients. In conclusion, CCR2 and CCR5 are key genes in the TME and prognosis of TNBC with the potential of prognostic biomarkers in TNBC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kehao Le ◽  
Hui Guo ◽  
Qiulei Zhang ◽  
Xiaojuan Huang ◽  
Ming Xu ◽  
...  

Abstract Breast cancer is the most frequently diagnosed malignancy among women, and triple-negative breast cancer (TNBC) is a highly aggressive subtype. Increasing evidence has shown that lncRNAs are involved in tumor growth, cell-cycle, and apoptosis through interactions with miRNAs or mRNAs. However, there is still limited data on ceRNAs involved in the molecular mechanisms underlying TNBC. In this study, we applied the weighted gene co-expression network analysis to the existing microarray mRNA and lncRNA expression data obtained from the breast tissues of TNBC patients to find the hub genes and lncRNAs involved in TNBC. Functional enrichment was performed on the module that correlated with Ki-67 status the most (Turquoise module). The hub genes in the Turquoise module were found to be associated with DNA repair, cell proliferation, and the p53 signaling pathway. We performed co-expression analysis of the protein-coding and lncRNA hub genes in the Turquoise module. Analysis of the RNA-seq data obtained from The Cancer Genome Atlas database revealed that the protein-coding genes and lncRNAs that were co-expressed were also differentially expressed in the TNBC tissues compared with the normal mammary tissues. On the basis of establishing the ceRNA network, two mRNAs (RAD51AP1 and TYMS) were found to be correlated with overall survival in TNBC. These results suggest that TNBC-specific mRNA and lncRNAs may participate in a complex ceRNA network, which represents a potential therapeutic target for the treatment of TNBC.


Author(s):  
Jindong Xie ◽  
Yutian Zou ◽  
Feng Ye ◽  
Wanzhen Zhao ◽  
Xinhua Xie ◽  
...  

Regarded as the most invasive subtype, triple-negative breast cancer (TNBC) lacks the expression of estrogen receptors (ERs), progesterone receptors (PRs), and human epidermal growth factor receptor 2 (HER2) proteins. Platelets have recently been shown to be associated with metastasis of malignant tumors. Nevertheless, the status of platelet-related genes in TNBC and their correlation with patient prognosis remain unknown. In this study, the expression and variation levels of platelet-related genes were identified and patients with TNBC were divided into three subtypes. We collected cohorts from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. By applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, we constructed a seven-gene signature which classified the two cohorts of patients with TNBC into low- or high-risk groups. Patients in the high-risk group were more likely to have lower survival rates than those in the low-risk group. The risk score, incorporated with the clinical features, was confirmed as an independent factor for predicting the overall survival (OS) time. Functional enrichment analyses revealed the involvement of a variety of vital biological processes and classical cancer-related pathways that could be important to the ultimate prognosis of TNBC. We then built a nomogram that performed well. Moreover, we tested the model in other cohorts and obtained positive outcomes. In conclusion, platelet-related genes were closely related to TNBC, and this novel signature could serve as a tool for the assessment of clinical prognosis.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yiduo Liu ◽  
Linxin Teng ◽  
Shiyi Fu ◽  
Guiyang Wang ◽  
Zhengjun Li ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is a highly heterogeneous subtype of breast cancer, showing aggressive clinical behaviors and poor outcomes. It urgently needs new therapeutic strategies to improve the prognosis of TNBC. Bioinformatics analyses have been widely used to identify potential biomarkers for facilitating TNBC diagnosis and management. Methods We identified potential biomarkers and analyzed their diagnostic and prognostic values using bioinformatics approaches. Including differential expression gene (DEG) analysis, Receiver Operating Characteristic (ROC) curve analysis, functional enrichment analysis, Protein-Protein Interaction (PPI) network construction, survival analysis, multivariate Cox regression analysis, and Non-negative Matrix Factorization (NMF). Results A total of 105 DEGs were identified between TNBC and other breast cancer subtypes, which were regarded as heterogeneous-related genes. Subsequently, the KEGG enrichment analysis showed that these genes were significantly enriched in ‘cell cycle’ and ‘oocyte meiosis’ related pathways. Four (FAM83B, KITLG, CFD and RBM24) of 105 genes were identified as prognostic signatures in the disease-free interval (DFI) of TNBC patients, as for progression-free interval (PFI), five genes (FAM83B, EXO1, S100B, TYMS and CFD) were obtained. Time-dependent ROC analysis indicated that the multivariate Cox regression models, which were constructed based on these genes, had great predictive performances. Finally, the survival analysis of TNBC subtypes (mesenchymal stem-like [MSL] and mesenchymal [MES]) suggested that FAM83B significantly affected the prognosis of patients. Conclusions The multivariate Cox regression models constructed from four heterogeneous-related genes (FAM83B, KITLG, RBM24 and S100B) showed great prediction performance for TNBC patients’ prognostic. Moreover, FAM83B was an important prognostic feature in several TNBC subtypes (MSL and MES). Our findings provided new biomarkers to facilitate the targeted therapies of TNBC and TNBC subtypes.


2021 ◽  
Vol 15 (1) ◽  
pp. 43-55
Author(s):  
Chao Yuan ◽  
Hongjun Yuan ◽  
Li Chen ◽  
Miaomiao Sheng ◽  
Wenru Tang

Background: Triple-negative breast cancer (TNBC) is characterized by fast tumor increase, rapid recurrence and natural metastasis. We aimed to identify a genetic signature for predicting the prognosis of TNBC. Materials & methods: We conducted a weighted correlation network analysis of datasets from the Gene Expression Omnibus. Multivariate Cox regression was used to construct a risk score model. Results: The multi-factor risk scoring model was meaningfully associated with the prognosis of patients with TBNC. The predictive power of the model was demonstrated by the time-dependent receiver operating characteristic curve and Kaplan–Meier curve, and verified using a validation set. Conclusion: We established a long noncoding RNA-based model for the prognostic prediction of TNBC.


2021 ◽  
Vol 22 (4) ◽  
pp. 1820
Author(s):  
Anna Makuch-Kocka ◽  
Janusz Kocki ◽  
Anna Brzozowska ◽  
Jacek Bogucki ◽  
Przemysław Kołodziej ◽  
...  

The BIRC (baculoviral IAP repeat-containing; BIRC) family genes encode for Inhibitor of Apoptosis (IAP) proteins. The dysregulation of the expression levels of the genes in question in cancer tissue as compared to normal tissue suggests that the apoptosis process in cancer cells was disturbed, which may be associated with the development and chemoresistance of triple negative breast cancer (TNBC). In our study, we determined the expression level of eight genes from the BIRC family using the Real-Time PCR method in patients with TNBC and compared the obtained results with clinical data. Additionally, using bioinformatics tools (Ualcan and The Breast Cancer Gene-Expression Miner v4.5 (bc-GenExMiner v4.5)), we compared our data with the data in the Cancer Genome Atlas (TCGA) database. We observed diverse expression pattern among the studied genes in breast cancer tissue. Comparing the expression level of the studied genes with the clinical data, we found that in patients diagnosed with breast cancer under the age of 50, the expression levels of all studied genes were higher compared to patients diagnosed after the age of 50. We observed that in patients with invasion of neoplastic cells into lymphatic vessels and fat tissue, the expression levels of BIRC family genes were lower compared to patients in whom these features were not noted. Statistically significant differences in gene expression were also noted in patients classified into three groups depending on the basis of the Scarff-Bloom and Richardson (SBR) Grading System.


2018 ◽  
pp. 1-13 ◽  
Author(s):  
Masayuki Nagahashi ◽  
YiWei Ling ◽  
Tetsu Hayashida ◽  
Yuko Kitagawa ◽  
Manabu Futamura ◽  
...  

Purpose It has been suggested that the biologic characteristics of breast cancer may differ among different geographic or ethnic populations. Indeed, triple-negative breast cancer (TNBC), the most lethal breast cancer subgroup, has been reported to occur at a higher incidence in Japan than in the United States. However, most genomic studies of these tumors are from Western countries, and the genomic landscape of TNBC in an Asian population has not been thoroughly investigated. Here, we sought to elucidate the geographic and ethnic diversity of breast cancer by examining actionable driver alterations in TNBC tumors from Japanese patients and comparing them with The Cancer Genome Atlas (TCGA) database, which gathers data primarily from non-Asian patients. Materials and Methods We performed comprehensive genomic profiling, including an analysis of 435 known cancer genes, among Japanese patients with TNBC (n = 53) and compared the results with independent data obtained from TCGA (n = 123). Results Driver alterations were identified in 51 (96%) of 53 Japanese patients. Although the overall alteration spectrum among Japanese patients was similar to that of TCGA, we found significant differences in the frequencies of alterations in MYC and PTK2. We identified three patients (5.7%) with a high tumor mutational burden, although no microsatellite instability was observed in any of the Japanese patients. Importantly, pathway analysis revealed that 66.0% (35 of 53) of Japanese patients, as well as 66.7% (82 of 123) of TCGA cohort, had alterations in at least one actionable gene targetable by US Food and Drug Administration–approved drug. Conclusion Our study identified actionable driver alterations in Japanese patients with TNBC, revealing new opportunities for targeted therapies in Asian patients.


Author(s):  
Minling Liu ◽  
Lei Li ◽  
Shan Huang ◽  
Xiaofen Pan ◽  
Huiru Dai ◽  
...  

Background: Triple-negative breast cancer (TNBC) is a highly aggressive malignancy with poor prognosis. Therefore, it is imperative to develop new prognostic or therapeutic biomarkers for TNBC. Objective: To explore the prognostic and therapeutic values of autophagy-related genes (ARGs) in TNBC. Methods: Overall, 157 TNBC patients’ data were obtained from The Cancer Genome Atlas database, and the ARGs were acquired from the Human Autophagy Database. Differentially expressed ARGs (DEGs) between tumor and normal tissues were identified and the prognostic ARGs were developed using R software. Kaplan–Meier survival curves and receiver operating characteristic (ROC) curves were both used to evaluate the accuracy of the signature. Patents about prognostic ARGs were reviewed through Worldwide Espacenet® and Patentscope®. Results: We obtained 28 DEGs and two prognostic ARGs (EIF4EBP1 and PARP1). The Kaplan–Meier survival curves showed that the survival rate of patients with low 2-ARG signature risk score was significantly higher than that of patients with high risk score (P=0.003). ROC at 5 years indicated that the signature had good prognostic accuracy (AUC=0.929). The signature was independent of T, N, M, and TNM stage (P<0.05). Patent review suggested that many mTOR inhibitors alone or in combination with another anticancer agent have been provided for treatment of many cancers and shown promising results. No drug patents about PARP1 overexpression were disclosed. Conclusion: We developed a 2-ARG signature (EIF4EBP1 and PARP1) which was an independent prognostic biomarker for TNBC. As EIF4EBP1 was upregulated in TNBC, mTOR inhibitors which blocked the mTOR/4EBP1/eIF4E pathway may be a promising therapeutic strategy for TNBC.


2021 ◽  
Author(s):  
xixun zhang

Abstract Backgroud: Breast cancer (BC) is an aggressive cancer with a high percentage recurrence and metastasis. As one of the most common distant metastasis organ in breast cancer, lung metastasis has a worse prognosis than that of liver and bone. Therefore, it’s important to explore some potential prognostic markers associated with the lung metastasis in breast cancer for preventive treatment. Methods: In our study, transcriptomic data and clinical information of breast cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database. Co-expression modules was built by Weighted gene co-expression network analysis (WGCNA) to find out the royalbule modules which is significantly associated with lung metastasis in breast cancer. Then, co-expression genes were analyzed for functional enrichment. Furthermore, the prognostic value of these genes was assessed by GEPIA Database and Kaplan-Meier Plotter. Results: Results showed that the hub genes, LMNB and CDC20, were up-regulated in breast cancer and indicated worse survival. Therefore, we speculate that these two genes play crucial roles in the process of lung metastasis in breast cancer, and can be used as potential prognostic markers in lung metastasis of breast cancer. Conclusion: Collectively, our study identified two potential key genes in the lung metastasis of breast cancer, which might be applied as the prognostic markers of the precise treatment in breast cancer with lung metastasis.


Sign in / Sign up

Export Citation Format

Share Document