scholarly journals The BIRC Family Genes Expression in Patients with Triple Negative Breast Cancer

2021 ◽  
Vol 22 (4) ◽  
pp. 1820
Author(s):  
Anna Makuch-Kocka ◽  
Janusz Kocki ◽  
Anna Brzozowska ◽  
Jacek Bogucki ◽  
Przemysław Kołodziej ◽  
...  

The BIRC (baculoviral IAP repeat-containing; BIRC) family genes encode for Inhibitor of Apoptosis (IAP) proteins. The dysregulation of the expression levels of the genes in question in cancer tissue as compared to normal tissue suggests that the apoptosis process in cancer cells was disturbed, which may be associated with the development and chemoresistance of triple negative breast cancer (TNBC). In our study, we determined the expression level of eight genes from the BIRC family using the Real-Time PCR method in patients with TNBC and compared the obtained results with clinical data. Additionally, using bioinformatics tools (Ualcan and The Breast Cancer Gene-Expression Miner v4.5 (bc-GenExMiner v4.5)), we compared our data with the data in the Cancer Genome Atlas (TCGA) database. We observed diverse expression pattern among the studied genes in breast cancer tissue. Comparing the expression level of the studied genes with the clinical data, we found that in patients diagnosed with breast cancer under the age of 50, the expression levels of all studied genes were higher compared to patients diagnosed after the age of 50. We observed that in patients with invasion of neoplastic cells into lymphatic vessels and fat tissue, the expression levels of BIRC family genes were lower compared to patients in whom these features were not noted. Statistically significant differences in gene expression were also noted in patients classified into three groups depending on the basis of the Scarff-Bloom and Richardson (SBR) Grading System.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7522 ◽  
Author(s):  
Xiang Song ◽  
Chao Zhang ◽  
Zhaoyun Liu ◽  
Qi Liu ◽  
Kewen He ◽  
...  

Triple-negative breast cancer (TNBC) is a particular subtype of breast malignant tumor with poorer prognosis than other molecular subtypes. Previous studies have demonstrated that some abnormal expression of non-coding RNAs including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) were closely related to tumor cell proliferation, apoptosis, invasion, migration and drug sensitivity. However, the role of non-coding RNAs in the pathogenesis of TNBC is still unclear. In order to characterize the molecular mechanism of non-coding RNAs in TNBC, we downloaded RNA data and miRNA data from the cancer genome atlas database. We successfully identified 686 message RNAs (mRNAs), 26 miRNAs and 50 lncRNAs as key molecules for high risk of TNBC. Then, we hypothesized that the lncRNA–miRNA–mRNA regulatory axis positively correlates with TNBC and constructed a competitive endogenous RNA (ceRNA) network of TNBC. Our series of analyses has shown that five molecules (TERT, TRIML2, PHBP4, mir-1-3p, mir-133a-3p) were significantly associated with the prognosis of TNBC, and there is a prognostic ceRNA sub-network between those molecules. We mapped the Kaplan–Meier curve of RNA on the sub-network and also suggested that the expression level of the selected RNA is related to the survival rate of breast cancer. Reverse transcription-quantitative polymerase chain reaction showed that the expression level of TRIML2 in TNBC cells was higher than normal. In general, our findings have implications for predicting metastasis, predicting prognosis and discovering new therapeutic targets for TNBC.


2020 ◽  
Vol 10 (2) ◽  
pp. 323-328
Author(s):  
Saba Malekian ◽  
Marveh Rahmati ◽  
Soyar Sari ◽  
Monireh Kazemimanesh ◽  
Raheleh Kheirbakhsh ◽  
...  

Purpose: Triple-negative breast cancer (TNBC) is specified by high vascularity and repetitious metastasis. Although several studies have indicated that angiogenesis has an important role in invasive breast cancer, a suitable model of TNBC that can show the exact onset of angiogenesis factors still needs to be developed. The purpose of this study is to determine the expression level of angiogenesis factors in different clinical stages of the 4T1 tumor as TNBC mouse model. Methods: Twenty mice were injected by the 4T1 cell line, and four mice selected as healthy controls. Following by tumor induction, the mice were randomly put into four groups, each contains four mice. Once the tumor volume reached to the early stage (<100 mm3 ), intermediate stage (100-300 mm3 ), advanced stage (300-500 mm3 ), and end stage (>500 mm3 ), they were removed by surgery. Then, the expression levels of Hif1α, VEGFR1, and VEGFR2 genes, as well as tumor markers of VEGF, bFGF and CD31, were evaluated by qPCR and immunohistochemistry (IHC) respectively. The statistical analysis was done by SPSS version 16. Results: TNBC tumors were confirmed and multi-foci metastasis in the lung were seen. The mRNA and protein expression levels of the angiogenesis factors increased in the early stage and as the tumor grew, their expression level enhanced dramatically. Conclusion: The 4T1 syngeneic mouse tumor may serve as an appropriate TNBC model for further investigation of the angiogenesis and therapies. Moreover, angiogenesis factors are induced before the advanced stage, and anti-angiogenesis therapy is necessary to be considered at the first line of treatment in TBNC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Débora Ferreira ◽  
Joaquim Barbosa ◽  
Diana A. Sousa ◽  
Cátia Silva ◽  
Luís D. R. Melo ◽  
...  

AbstractTriple-negative breast cancer is the most aggressive subtype of invasive breast cancer with a poor prognosis and no approved targeted therapy. Hence, the identification of new and specific ligands is essential to develop novel targeted therapies. In this study, we aimed to identify new aptamers that bind to highly metastatic breast cancer MDA-MB-231 cells using the cell-SELEX technology aided by high throughput sequencing. After 8 cycles of selection, the aptamer pool was sequenced and the 25 most frequent sequences were aligned for homology within their variable core region, plotted according to their free energy and the key nucleotides possibly involved in the target binding site were analyzed. Two aptamer candidates, Apt1 and Apt2, binding specifically to the target cells with $$K_{d}$$ K d values of 44.3 ± 13.3 nM and 17.7 ± 2.7 nM, respectively, were further validated. The binding analysis clearly showed their specificity to MDA-MB-231 cells and suggested the targeting of cell surface receptors. Additionally, Apt2 revealed no toxicity in vitro and showed potential translational application due to its affinity to breast cancer tissue sections. Overall, the results suggest that Apt2 is a promising candidate to be used in triple-negative breast cancer treatment and/or diagnosis.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Erica M. Stringer-Reasor ◽  
Jori E. May ◽  
Eva Olariu ◽  
Valerie Caterinicchia ◽  
Yufeng Li ◽  
...  

Abstract Background Poly (ADP-ribose)-polymerase inhibitors (PARPi) have been approved for cancer patients with germline BRCA1/2 (gBRCA1/2) mutations, and efforts to expand the utility of PARPi beyond BRCA1/2 are ongoing. In preclinical models of triple-negative breast cancer (TNBC) with intact DNA repair, we have previously shown an induced synthetic lethality with combined EGFR inhibition and PARPi. Here, we report the safety and clinical activity of lapatinib and veliparib in patients with metastatic TNBC. Methods A first-in-human, pilot study of lapatinib and veliparib was conducted in metastatic TNBC (NCT02158507). The primary endpoint was safety and tolerability. Secondary endpoints were objective response rates and pharmacokinetic evaluation. Gene expression analysis of pre-treatment tumor biopsies was performed. Key eligibility included TNBC patients with measurable disease and prior anthracycline-based and taxane chemotherapy. Patients with gBRCA1/2 mutations were excluded. Results Twenty patients were enrolled, of which 17 were evaluable for response. The median number of prior therapies in the metastatic setting was 1 (range 0–2). Fifty percent of patients were Caucasian, 45% African–American, and 5% Hispanic. Of evaluable patients, 4 demonstrated a partial response and 2 had stable disease. There were no dose-limiting toxicities. Most AEs were limited to grade 1 or 2 and no drug–drug interactions noted. Exploratory gene expression analysis suggested baseline DNA repair pathway score was lower and baseline immunogenicity was higher in the responders compared to non-responders. Conclusions Lapatinib plus veliparib therapy has a manageable safety profile and promising antitumor activity in advanced TNBC. Further investigation of dual therapy with EGFR inhibition and PARP inhibition is needed. Trial registration ClinicalTrials.gov, NCT02158507. Registered on 12 September 2014


2021 ◽  
Vol 22 (11) ◽  
pp. 5475
Author(s):  
Griffin Wright ◽  
Manoj Sonavane ◽  
Natalie R. Gassman

Base Excision Repair (BER) addresses base lesions and abasic sites induced by exogenous and endogenous stressors. X-ray cross complementing group 1 (XRCC1) functions as a scaffold protein in BER and single-strand break repair (SSBR), facilitating and coordinating repair through its interaction with a host of critical repair proteins. Alterations of XRCC1 protein and gene expression levels are observed in many cancers, including colorectal, ovarian, and breast cancer. While increases in the expression level of XRCC1 are reported, the transcription factors responsible for this up-regulation are not known. In this study, we identify the signal transducer and activator of transcription 3 (STAT3) as a novel regulator of XRCC1 through chromatin immunoprecipitation. Activation of STAT3 through phosphorylation at Y705 by cytokine (IL-6) signaling increases the expression of XRCC1 and the occupancy of STAT3 within the XRCC1 promoter. In triple negative breast cancer, the constitutive activation of STAT3 upregulates XRCC1 gene and protein expression levels. Increased expression of XRCC1 is associated with aggressiveness and resistance to DNA damaging chemotherapeutics. Thus, we propose that activated STAT3 regulates XRCC1 under stress and growth conditions, but constitutive activation in cancers results in dysregulation of XRCC1 and subsequently BER and SSBR.


2020 ◽  
Vol 29 ◽  
pp. 096368972092998 ◽  
Author(s):  
Chuang Du ◽  
Yan Wang ◽  
Yingying Zhang ◽  
Jianhua Zhang ◽  
Linfeng Zhang ◽  
...  

Triple-negative breast cancer (TNBC) is one of the most aggressive cancer types with high recurrence, metastasis, and drug resistance. Recent studies report that long noncoding RNAs (lncRNAs)-mediated competing endogenous RNAs (ceRNA) play an important role in tumorigenesis and drug resistance of TNBC. Although elevated lncRNA DLX6 antisense RNA 1 (DLX6-AS1) has been observed to promote carcinogenesis in various cancers, the role in TNBC remained unclear. In this study, expression levels of DLX6-AS1 were increased in TNBC tissues and cell lines when compared with normal tissues or breast fibroblast cells which were determined by quantitative real-time PCR (RT-qPCR). Then, CCK-8 assay, cell colony formation assay and western blot were performed in CAL-51 cells transfected with siRNAs of DLX6-AS1 or MDA-MB-231 cells transfected with DLX6-AS1 over expression plasmids. Knock down of DLX6-AS1 inhibited cell proliferation, epithelial-mesenchymal transition (EMT), decreased expression levels of BCL2 apoptosis regulator (Bcl-2), Snail family transcriptional repressor 1 (Snail) as well as N-cadherin and decreased expression levels of cleaved caspase-3, γ-catenin as well as E-cadherin, while up regulation of DLX6-AS1 had the opposite effect. Besides, knockdown of DLX6-AS1 in CAL-51 cells or up regulation of DLX6-AS1 in MDA-MB-231 cells also decreased or increased cisplatin resistance of those cells analyzed by MTT assay. Moreover, by using dual luciferase reporter assay, RNA immunoprecipitation and RNA pull down assay, a ceRNA which was consisted by lncRNA DLX6-AS1, microRNA-199b-5p (miR-199b-5p) and paxillin (PXN) was identified. And DLX6-AS1 function through miR-199b-5p/PXN in TNBC cells. Finally, results of xenograft experiments using nude mice showed that DLX6-AS1 regulated cell proliferation, EMT and cisplatin resistance by miR-199b-5p/PXN axis in vivo. In brief, DLX6-AS1 promoted cell proliferation, EMT, and cisplatin resistance through miR-199b-5p/PXN signaling in TNBC in vitro and in vivo.


2018 ◽  
pp. 1-13 ◽  
Author(s):  
Masayuki Nagahashi ◽  
YiWei Ling ◽  
Tetsu Hayashida ◽  
Yuko Kitagawa ◽  
Manabu Futamura ◽  
...  

Purpose It has been suggested that the biologic characteristics of breast cancer may differ among different geographic or ethnic populations. Indeed, triple-negative breast cancer (TNBC), the most lethal breast cancer subgroup, has been reported to occur at a higher incidence in Japan than in the United States. However, most genomic studies of these tumors are from Western countries, and the genomic landscape of TNBC in an Asian population has not been thoroughly investigated. Here, we sought to elucidate the geographic and ethnic diversity of breast cancer by examining actionable driver alterations in TNBC tumors from Japanese patients and comparing them with The Cancer Genome Atlas (TCGA) database, which gathers data primarily from non-Asian patients. Materials and Methods We performed comprehensive genomic profiling, including an analysis of 435 known cancer genes, among Japanese patients with TNBC (n = 53) and compared the results with independent data obtained from TCGA (n = 123). Results Driver alterations were identified in 51 (96%) of 53 Japanese patients. Although the overall alteration spectrum among Japanese patients was similar to that of TCGA, we found significant differences in the frequencies of alterations in MYC and PTK2. We identified three patients (5.7%) with a high tumor mutational burden, although no microsatellite instability was observed in any of the Japanese patients. Importantly, pathway analysis revealed that 66.0% (35 of 53) of Japanese patients, as well as 66.7% (82 of 123) of TCGA cohort, had alterations in at least one actionable gene targetable by US Food and Drug Administration–approved drug. Conclusion Our study identified actionable driver alterations in Japanese patients with TNBC, revealing new opportunities for targeted therapies in Asian patients.


2021 ◽  
Vol 11 (2) ◽  
pp. 61
Author(s):  
Jiande Wu ◽  
Chindo Hicks

Background: Breast cancer is a heterogeneous disease defined by molecular types and subtypes. Advances in genomic research have enabled use of precision medicine in clinical management of breast cancer. A critical unmet medical need is distinguishing triple negative breast cancer, the most aggressive and lethal form of breast cancer, from non-triple negative breast cancer. Here we propose use of a machine learning (ML) approach for classification of triple negative breast cancer and non-triple negative breast cancer patients using gene expression data. Methods: We performed analysis of RNA-Sequence data from 110 triple negative and 992 non-triple negative breast cancer tumor samples from The Cancer Genome Atlas to select the features (genes) used in the development and validation of the classification models. We evaluated four different classification models including Support Vector Machines, K-nearest neighbor, Naïve Bayes and Decision tree using features selected at different threshold levels to train the models for classifying the two types of breast cancer. For performance evaluation and validation, the proposed methods were applied to independent gene expression datasets. Results: Among the four ML algorithms evaluated, the Support Vector Machine algorithm was able to classify breast cancer more accurately into triple negative and non-triple negative breast cancer and had less misclassification errors than the other three algorithms evaluated. Conclusions: The prediction results show that ML algorithms are efficient and can be used for classification of breast cancer into triple negative and non-triple negative breast cancer types.


Author(s):  
Minling Liu ◽  
Lei Li ◽  
Shan Huang ◽  
Xiaofen Pan ◽  
Huiru Dai ◽  
...  

Background: Triple-negative breast cancer (TNBC) is a highly aggressive malignancy with poor prognosis. Therefore, it is imperative to develop new prognostic or therapeutic biomarkers for TNBC. Objective: To explore the prognostic and therapeutic values of autophagy-related genes (ARGs) in TNBC. Methods: Overall, 157 TNBC patients’ data were obtained from The Cancer Genome Atlas database, and the ARGs were acquired from the Human Autophagy Database. Differentially expressed ARGs (DEGs) between tumor and normal tissues were identified and the prognostic ARGs were developed using R software. Kaplan–Meier survival curves and receiver operating characteristic (ROC) curves were both used to evaluate the accuracy of the signature. Patents about prognostic ARGs were reviewed through Worldwide Espacenet® and Patentscope®. Results: We obtained 28 DEGs and two prognostic ARGs (EIF4EBP1 and PARP1). The Kaplan–Meier survival curves showed that the survival rate of patients with low 2-ARG signature risk score was significantly higher than that of patients with high risk score (P=0.003). ROC at 5 years indicated that the signature had good prognostic accuracy (AUC=0.929). The signature was independent of T, N, M, and TNM stage (P<0.05). Patent review suggested that many mTOR inhibitors alone or in combination with another anticancer agent have been provided for treatment of many cancers and shown promising results. No drug patents about PARP1 overexpression were disclosed. Conclusion: We developed a 2-ARG signature (EIF4EBP1 and PARP1) which was an independent prognostic biomarker for TNBC. As EIF4EBP1 was upregulated in TNBC, mTOR inhibitors which blocked the mTOR/4EBP1/eIF4E pathway may be a promising therapeutic strategy for TNBC.


2021 ◽  
Author(s):  
jintao cao ◽  
SHUAI SUN ◽  
RAN LI ◽  
RUI MIN ◽  
XINGYU FAN ◽  
...  

Abstract Background The current epidemiology shows that the incidence of breast cancer is increasing year by year and tends to be younger. Triple-negative breast cancer is the most malignant of breast cancer subtypes. The application of bioinformatics in tumor research is becoming more and more extensive. This study provided research ideas and basis for exploring the potential targets of gene therapy for triple-negative breast cancer (TNBC). Methods We analyzed three gene expression profiles (GSE64790、GSE62931、GSE38959) selected from the Gene Expression Omnibus (GEO) database. The GEO2R online analysis tool was used to screen for differentially expressed genes (DEGs) between TNBC and normal tissues. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied to identify the pathways and functional annotation of DEGs. Protein–protein interaction network of these DEGs were visualized by the Metascape gene-list analysis tool so that we could find the protein complex containing the core genes. Subsequently, we investigated the transcriptional data of the core genes in patients with breast cancer from the Oncomine database. Moreover, the online Kaplan–Meier plotter survival analysis tool was used to evaluate the prognostic value of core genes expression in TNBC patients. Finally, immunohistochemistry (IHC) was used to evaluated the expression level and subcellular localization of CCNB2 on TNBC tissues. Results A total of 66 DEGs were identified, including 33 up-regulated genes and 33 down-regulated genes. Among them, a potential protein complex containing five core genes was screened out. The high expression of these core genes was correlated to the poor prognosis of patients suffering breast cancer, especially the overexpression of CCNB2. CCNB2 protein positively expressed in the cytoplasm, and its expression in triple-negative breast cancer tissues was significantly higher than that in adjacent tissues. Conclusions CCNB2 may play a crucial role in the development of TNBC and has the potential as a prognostic biomarker of TNBC.


Sign in / Sign up

Export Citation Format

Share Document