scholarly journals Sulphate-Crosslinked Chitosan as an Adsorbent for the Removal of Congo Red Dye From Aqueous Solution

2018 ◽  
Vol 11 ◽  
pp. 117862211881168 ◽  
Author(s):  
Christine Jeyaseelan ◽  
Nisha Chaudhary ◽  
Ravin Jugade

Dyes are a major cause of concern nowadays as large quantities are being released into water bodies causing pollution. In this article, modified chitosan (sulphate crosslinked) has been studied for the removal of Congo red (a benzidine-based anionic diazo dye) which is a toxic dye introduced into water bodies from textile industries. Sulphate-crosslinked chitosan (SCC) was prepared in the laboratory and the characterization of SCC was done by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Various parameters such as pH, contact time, adsorbent dosage, and concentration of adsorbent were optimized. The adsorption capacity was determined at pH 3.0, at which the percentage recovery was about 90% and followed Freundlich adsorption isotherm with an adsorption capacity of 91.8 mg/g. The adsorption followed pseudo-second-order kinetics. Various thermodynamic parameters were also determined for the change in adsorption with temperature. The SCC was regenerated with NaOH and showed good recycling capacity. The modified chitosan was applied for the removal of Congo red from industrial wastewater samples (spiked).


NANO ◽  
2017 ◽  
Vol 12 (02) ◽  
pp. 1750017 ◽  
Author(s):  
Xinzhong Deng ◽  
Yaowu Wang ◽  
Jianping Peng ◽  
Kejia Liu ◽  
Naixiang Feng ◽  
...  

A facile cathodic electrodeposition process was developed to prepare Mg(OH)2/Graphene nanocomposites (MGN), which was used to remove Congo Red (CR), an anionic dye from aqueous solution. The morphology and phase structure were analyzed by transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Raman and X-ray photoelectron spectroscopy (XPS). The effects of experimental parameters, such as graphene content, adsorption time, initial concentrations of CR and pH values, on the adsorption capacity of CR were studied. The obtained MGN shows the good performance in CR, with an adsorption capacity of 1986.43[Formula: see text]mg[Formula: see text]g[Formula: see text]. The equilibrium adsorption and kinetics data fit with Langmuir isotherm and the pseudo-second-order model, respectively. Thermodynamic data suggest that CR adsorption onto MGN is spontaneous ([Formula: see text]: –9.62[Formula: see text]kJ[Formula: see text]mol[Formula: see text] at 313[Formula: see text]K, endothermic ([Formula: see text]: 36.261[Formula: see text]kJ[Formula: see text]mol[Formula: see text] and the degree of disorder increased ([Formula: see text]: 146.848[Formula: see text]J[Formula: see text]moL[Formula: see text][Formula: see text]K[Formula: see text] at the solid-solution interface. Moreover, the adsorption activation energy ([Formula: see text]: 38.929[Formula: see text]kJ[Formula: see text]mol[Formula: see text] of CR evaluated from the Arrhenius equation illustrates that it is a physical process. This adsorbent exhibits efficient adsorption properties and high recycling efficiency, making it a promising adsorbent for removing anionic dyes.



2014 ◽  
Vol 70 (12) ◽  
pp. 2047-2055 ◽  
Author(s):  
Shashikant Kahu ◽  
D. Saravanan ◽  
Ravin Jugade

A sulfate-crosslinked chitosan (SCC) was prepared for effective detoxification of hexavalent chromium (Cr(VI)) from effluents. SCC was characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray studies. The maximum adsorption of Cr(VI) was observed at pH 6.0 with adsorption capacity of 157 mg/g in accordance with the Langmuir adsorption isotherm model. The adsorption process was found to follow the pseudo-second-order rate kinetics. From the study of various thermodynamic parameters (Gibbs energy, entropy and enthalpy changes), the adsorption capacity was found to decrease with increase in temperature. Column studies were carried out to obtain a breakthrough point of the adsorbent. The adsorbent was regenerated using sodium hydroxide with no change in the adsorption efficiency for up to 10 cycles. Effect of diverse ions on adsorption efficiency was studied and SCC was applied for Cr(VI) removal in synthetic effluents.



2021 ◽  
Vol 11 (6) ◽  
pp. 14986-14997

In this study, the adsorption of Congo red dye in an aqueous solution on two synthetic clay adsorbents, MgAl-LDH (2:1) and MgAl-LDH (3:1), was investigated using batch system experiments. The adsorbents' characterization was carried out by various techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy FT-IR. The conditions applied in the adsorption experiments including the mass of adsorbent, initial concentration, contact time, pH, and temperature. The kinetic data were modeled by pseudo-first-order and pseudo-second-order. Langmuir and Freundlich's models analyzed the adsorption isotherms of Congo red on the two adsorbents. It was found that the adsorption process could be described by Langmuir isotherm. The maximum amount of adsorption is 285.71 and 166.66 mg/g for MgAl-LDH (2:1) and MgAl-LDH (3:1), respectively. Thermodynamic parameters such as enthalpy ∆H°, enthalpy ∆S°, and free enthalpy ∆G° were also evaluated to predict the nature of adsorption.



2021 ◽  
Author(s):  
An Wang ◽  
Boyuan Li ◽  
Yatong Wang ◽  
Xiaoran Sun ◽  
Simeng Bian ◽  
...  

Abstract In this study, a carbon composite based on humic acid (CAH) was synthesized by partially carbonizing humic acid by using aluminum sulfate with a mass ratio of 2:3 and a leavening agent oxalic acid with a fixed mass. The morphology and microstructure of the sample are measured by scanning electron microscope (SEM), x-ray diffractometer (XRD), thermal analysis (TG-DSC), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and Fourier Transform infrared spectroscopy (FT-IR) is used to analyze the composition and structure of materials. The BET surface area of CAH is determined to be 149 m²/g. Congo red was used as a model adsorbent for adsorption research. When the dye concentration is 400 mg/L and 10mg of adsorbent powder is used. CAH has the highest dye removal rate of adsorption capacity. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data and the Langmuir and Freundlich models were applied to describe the adsorption isotherms. The results showed that the equilibrium adsorption data were found to fit better to the Langmuir adsorption model and the kinetic process of adsorption could be described by the pseudo-second-order model. Compared with humic acid, CAH composite materials can effectively improve the adsorption rate and adsorption capacity of Congo red, and the adsorption capacity is as high as 3986mg/g within 30 minutes. In addition, considering the cost issue, this study selected low-cost humic acid as a carbon source to prepare composite materials, emphasizing the importance of cost.



2013 ◽  
Vol 69 (3) ◽  
pp. 612-621 ◽  
Author(s):  
Ting-guo Yan ◽  
Li-juan Wang

A magnetic adsorbent was synthesized by γ-aminopropyltriethoxysilane (APTES) modification of Fe3O4 particles using a two-step process. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vibration sample magnetometry were used to characterize the obtained magnetic adsorbent. EDS and XPS showed that APTES polymer was successfully introduced onto the as-prepared Fe3O4/APTES particle surfaces. The saturation magnetization of the magnetic adsorbent was around 65 emu g−1, which indicated that the dye can be removed fast and efficiently from aqueous solution with an external magnetic field. The maximum adsorption capacities of Fe3O4/APTES for C.I. Reactive Red 228 (RR 228) and Congo Red (CR) were 51.4 and 118.8 mg g−1, respectively. The adsorption of C.I. Reactive Red 228 (RR 228) and Congo Red (CR) on Fe3O4/APTES particles corresponded well to the Langmuir model and the Freundlich model, respectively. The adsorption processes for RR 228 and CR followed the pseudo-second-order model. The Boyd's film-diffusion model showed that film diffusion also played a major role in the studied adsorption processes for both dyes. Thermodynamic study indicated that both of the adsorption processes of the two dyes are spontaneous exothermic.



Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3209
Author(s):  
Aphiwe Siyasanga Gugushe ◽  
Anele Mpupa ◽  
Tshimangadzo Saddam Munonde ◽  
Luthando Nyaba ◽  
Philiswa Nosizo Nomngongo

In this study, Fe3O4-ZrO2 functionalized with 3-aminopropyltriethoxysilane (Fe3O4-ZrO2@APS) nanocomposite was investigated as a nanoadsorbent for the removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions from aqueous solution and real samples in batch mode systems. The prepared magnetic nanomaterials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy/energy dispersion x-ray (SEM/EDX) Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Factors (such as adsorbent dose and sample pH) affecting the adsorption behavior of the removal process were studied using the response surface methodology. Under optimized condition, equilibrium data obtained were fitted into the Langmuir and Freundlich isotherms and the data fitted well with Langmuir isotherms. Langmuir adsorption capacities (mg/g) were found to be 113, 111, 128, and 123 mg/g for Cd, Cu, Ni and Mn, respectively. In addition, the adsorption kinetics was analyzed using five kinetic models, pseudo-first order, pseudo-second order, intraparticle diffusion and Boyd models. The adsorbent was successfully applied for removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions in wastewater samples.





2021 ◽  
Vol 43 (4) ◽  
pp. 436-436
Author(s):  
Nida Shams Jalbani Nida Shams Jalbani ◽  
Amber R Solangi Amber R Solangi ◽  
Shahabuddin Memon Shahabuddin Memon ◽  
Ranjhan Junejo Ranjhan Junejo ◽  
Asif Ali Bhatti Asif Ali Bhatti

In current study, the diphenylaminomethylcalix[4]arene (3) was synthesized and immobilized onto silica surface to prepare a selective, regenerable and stable resin-4. The synthesized resin-4 has been characterized by FT-IR spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX) and Brunauer-Emmett-Teller (BET) techniques. To check the adsorption capacity of resin-4, the batch and column adsorption methodology were applied and it has observed that the resin-4 was selectively removed Hg2+ ions under the optimized parameters. The maximum adsorption capacity was obtained at pH 9 using 25 mg/L of resin-4. Under the optimal conditions, different equilibrium, kinetic and thermodynamic models were applied to experimental data. The results show that adsorption mechanism is chemical in nature following Langmuir model with good correlation coefficient (R2=0.999) and having 712.098 (mmol/g) adsorption capacity. The energy of calculated from D-R model suggests the ion exchange nature of the adsorption phenomenon. Dynamic adsorption experiments were conducted using Thomas model. The maximum solid phase concentration (qo) was 7.5 and rate constant was found to be 0.176 with (R2=0.938) for Hg2+ ions. The kinetic study describes that the adsorption mechanism follows pseudo second order (R2=0.999). The thermodynamic parameters such as ∆H (0.032 KJ/mol) and ∆S (0.127 KJ/mol /K) and ∆G (-5.747,-6.306, -7.027 KJ/mol) shows that the adsorption of Hg2+ ion is endothermic and spontaneous. The reusability of resin-4 was also checked and it has observed that the after 15 cycle only 1.2 % adsorption reduces. Moreover, the resin-4 was applied on real wastewater samples obtained from local industrial zone of Karachi, Sindh-Pakistan.



2021 ◽  
Author(s):  
Himanshu Patel

Abstract Present invention involves to study the elution profile of anionic and cationic compounds from exhausted adsorbents using various eluents. Batch elution studies of anionic components like Congo Red dye and Carbonate ion; and cationic compounds such as Methylene blue dye and Cadmium metal from previously used naturally prepared adsorbents i.e. Gulmohar (Delonix regia) leaf powder - GLP; and Neem (Azadirachta indica) leaf powder – NLP and their derivatives were conducted. Different eluents used for batch study were various acids and alkaline solution having various concentration and solvents having different functional groups in seven sorption-desorption cycles. The batch data were accessed by kinetic models (Pseudo First-, Pseudo Second-order, Intra-partice and Elovic equation). Column elution experiments of Congo red and Cadmium from NLP and activated charcoal from NLP (AC-NLP) respectively was performed using selected eluent. Sorption and elution process plots and parameters for seven sorption–desorption cycles were evaluated and discussed. Plots of life cycle indicating activity-indicator equations were drawn, and their parameters were calculated and mentioned. From desorption efficiencies, it revealed that desorption exploration is predominately depends upon pH factor.



Sign in / Sign up

Export Citation Format

Share Document