Effects of material heterogeneity on surface fatigue for rough lubricated rolling–sliding contacts

Author(s):  
Guillermo E Morales-Espejel ◽  
Hugo Boffy ◽  
CH Venner

In view of increasingly severe operating conditions and the use of composite (strongly) heterogeneous materials, detailed modelling and optimisation methods are needed to predict the effects of subsurface material topology, either by design or resulting from inclusions and material anisotropy, on rolling-sliding contact fatigue life. In this paper, a method is proposed showing that such predictions can at present be obtained for realistic configurations on small-scale computers by integrating efficient numerical solution of the 3D displacement and stress field in the (heterogeneous) material with fast rough surface-lubricated contact models. Contact pressures, subsurface stresses and surface fatigue effects are shown for cases of bonded individual or multiple (clusters) of statistically distributed inhomogeneities close to the surface in realistic actual rolling–sliding rough contact geometries. The model contributes to the development of optimised failure criteria for composite/heterogeneous materials close to the surface.

Author(s):  
L. M. Rudd ◽  
C. G. Barnes ◽  
D. A. Kelly

This paper outlines relevant aspects of the operation of thrust cones and describes salient features of an unexpected form of failure encountered in small-scale thrust cone simulation tests. Interpretation of the thrust cone simulation test results in the light of related twin-disc tests at the relevant low slide-roll ratio leads to two conclusions. Rather than scuffing, the limiting surface failure mechanism in small-scale thrust cone tests was general plastic deformation with cold pressure welding promoted by the lack of support at the cone edges and the prolate epicycloidal path followed by the contact. The limiting surface failure mechanism in full-scale thrust cone bearings, which have markedly lower curvature and higher rolling speed than used in small-scale simulation tests, was predicted to be scuffing delayed to relatively severe operating conditions by prior running-in. Further development of the insights gained from the related twin-disc work results in two recommendations. Future work should be directed to assessing the surface modification that follows transition from EHL to mixed lubrication and redefining the conditions in which transition to micro-EHL occurs in order to quantify the potential enhancement of scuffing resistance offered by controlled running-in. It should also concentrate on evaluating the combined effects of microgeometry conducive to lubricant film formation and material properties resistant to weld formation in order to obviate the difficulty of assigning a representative value to the operating friction coefficient that is common to a number of proposed failure criteria.


2018 ◽  
Vol 77 (3) ◽  
pp. 149-156 ◽  
Author(s):  
V. S. Kossov ◽  
G. M. Volokhov ◽  
O. G. Krasnov ◽  
M. N. Ovechnikov ◽  
A. L. Protopopov ◽  
...  

Analysis of operational data for defective and highly defective rails showed that up to 25 % is the contact-fatigue defects. In connection with the development of heavy haul traffic on the Russian railways, it is relevant to determine the influence of cars with increased axial loads of 25 and 27 tf on the contact fatigue life of rails. The solution of this problem is set forth in this article. The Brown-Miller model of multi-axial fatigue was used in the calculation. This model is integrated into the Fatigue software system, which is tied to the Marc calculation system through Pat-ran. Since under operating conditions the wheel moves (rolls) along the rail on meandering trajectory, in computer modeling weight coefficients were taken into account that characterize the percentage of wheels in the cross-sectional areas of the rail. Calculations of contact fatigue life took into account the variability of vertical loads from the impact on the track of trains formed from innovative open cars with axial loads of 23.5, 25 and 27 tf under operating conditions, loaded with real loading blocks. According to the analysis of calculated data with an increase in axial loads from 23.5 to 25 tf, it is necessary to expect a decrease in the service life of rails in contact fatigue resistance by 19 %, with a further increase in axle loads of up to 27 tf per 32 %. Considering that the share of freight cars with axial loads of 25 tf does not exceed 15...20 %, then on the routes of its use the service life of rails should be expected to decrease by 3...4 %. The method proposed by the authors for predicting the contact fatigue life of rails with increasing axial loads is advisable to improve in part of the experimental determination of the fatigue and strength characteristics of rail steel from the degree of hardening of the rolling surface, its probabilistic properties and the use of the integral distribution law for vertical forces, taking into account the structure of the freight traffic passing through the section. The work was carried out according to the RFBR project 17-20 01088.


1976 ◽  
Vol 98 (2) ◽  
pp. 308-315 ◽  
Author(s):  
W. E. Littmann ◽  
B. W. Kelley ◽  
W. J. Anderson ◽  
R. S. Fein ◽  
E. E. Klaus ◽  
...  

A brief review of relevant literature is presented with the logic underlying the selection of lubricant base stocks, additives, materials, surface textures, and other variables used in contact fatigue tests under rolling-sliding conditions. Tests of selected combinations (mineral oil with and without a zinc dialkyldithiophosphate additive and a polyolester synthetic with and without its typical additive package) showed that lubricant chemistry affects the stress/life slope and the Weibull slope (scatter in life). Results of the overall program show that the relative contact fatigue life for different lubricant chemistries should be evaluated using operating conditions, especially stress and slip levels, near to expected application conditions.


Lubricants ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 100
Author(s):  
Gerald Trummer ◽  
Zing Siang Lee ◽  
Roger Lewis ◽  
Klaus Six

The coefficient of friction between a wheel tread and the top of the rail should be maintained at intermediate levels to limit frictional tangential contact forces. This can be achieved by applying top-of-rail products. Reducing the coefficient of friction to intermediate levels reduces energy consumption and fuel costs, as well as damage to the wheel and rail surfaces, such as, e.g., wear, rolling contact fatigue, and corrugation. This work describes a simulation model that predicts the evolution of the coefficient of friction as a function of the number of wheel passes and the distance from the application site for wayside application of top-of-rail products. The model considers the interplay of three mechanisms, namely the pick-up of product by the wheel at the application site, the repeated transfer of the product between the wheel and rail surfaces, and the product consumption. The model has been parameterized with data from small-scale twin disc rig experiments and full-scale wheel–rail rig experiments. Systematic investigations of the model behaviour for a railway operating scenario show that all three mechanisms may limit the achievable carry-on distance of the product. The developed simulation model assists in understanding the interplay of the mechanisms that govern the evolution of the coefficient of friction in the field. It may aid in finding optimal product application strategies with respect to application position, application amount, and application pattern depending on specific railway operating conditions.


Author(s):  
Shashikant Pandey ◽  
Muniyappa Amarnath

Rolling-element bearings are the most commonly used components in all rotating machinery. The variations in the operating conditions such as an increase in the number of operating cycles, load, speed, service temperature, and lubricant degradation result in the development of various defects such as pitting, spalling, scuffing, scoring, etc. The defects that appeared on rolling contact surfaces cause surface deterioration and change in the vibration and sound levels of the bearing system. The present experimental investigations are aimed at assessing the surface fatigue wear that appears on the contact surfaces of roller bearings. The studies considered the estimation of specific film thickness, analysis of surface fatigue wear developed on the rolling-element surfaces, surface roughness analysis, grease degradation analysis using Fourier transform infrared radiation, and vibration and sound signal measurement and analysis. The results obtained from the experimental investigation provide a good correlation between surface wear, vibration, and sound signals with a transition in the lubrication regimes in the Stribeck curve.


1982 ◽  
Vol 104 (3) ◽  
pp. 330-334 ◽  
Author(s):  
A. H. Nahm

Accelerated rolling contact fatigue tests were conducted to study the effect of grain flow orientation on the rolling contact fatigue life of vacuum induction melted and vacuum arc remelted (VIM-VAR) AISI M-50. Cylindrical test bars were prepared from a billet with 0, 45, and 90 deg orientations relative to billet forging flow direction. Tests were run at a Hertzian stress of 4,826 MPa with a rolling speed of 12,500 rpm at room temperature, and lubricated with Type I (MIL-L-7808G) oil. It was observed that rolling contact fatigue life increased when grain flow line direction became more parallel to the rolling contact surface.


Author(s):  
W. F. Carey ◽  
G. J. Williamson

On plants in which gases are processed, the gases are often brought into direct contact with water—usually in packed towers. The purpose may be to cool a hot gas, to increase the humidity of a gas, or, in the well-known special case of water-cooling towers, to cool water by contact with atmospheric air. These processes involve simultaneous transfers of sensible heat and water vapour, and existing methods of analysis are complex and laborious, except for the cooling of water, for which Merkel's total-heat method has long been available. Merkel's approximate solution offers the engineer a simple method of working out, for any operating conditions, the amount of heat transferred and the “driving force” available for transferring it. The present paper generalizes the total-heat method and, with a permissible sacrifice in accuracy, preserves the essential simplicity of the water-cooling treatment for gas-cooling and humidification processes. To complete the design of a packed tower, a knowledge is required of the characteristics of the packing. Information obtained in small towers is given for a number of packings, and a worked example shows how to apply the method of treatment, and the packing data presented, to the design of a large plant tower.


Sign in / Sign up

Export Citation Format

Share Document