Tribological performance of AlCrN–MoS2/PTFE hard-lubricant composite coatings

Author(s):  
Yang Lu ◽  
Jianxin Deng ◽  
Wenlong Song ◽  
Xuemu Li ◽  
Liangliang Zhang ◽  
...  

In order to improve the tribological performance of the physical vapor-deposited AlCrN coatings, molybdenum disulfide (MoS2)/poly tetra fluoroethylene (PTFE) coatings were fabricated on the AlCrN coatings surface through the thermal spraying method. The microstructure, adhesive strength, hardness, and tribological properties were investigated. Reciprocating sliding tests against SiC ball were executed with a ball-on-plate tribometer. Results showed that the adhesive strength between the AlCrN–MoS2/PTFE composite coatings and substrate was increased by about 15% compared with single AlCrN coatings. Compared with the single MoS2/PTFE coatings, the hardness of the AlCrN–MoS2/PTFE composite coatings surface was increased by about 15%. The MoS2/PTFE layer can availably reduce the friction coefficient of single AlCrN layer, and the AlCrN–MoS2/PTFE composite coatings exhibited the lowest and the most stable friction coefficient. In addition, the MoS2/PTFE layer existed on the wear track and accumulated on both the sides, which was the main reason that the friction coefficient was still lower compared with the samples without MoS2/PTFE coatings.

2013 ◽  
Vol 572 ◽  
pp. 277-280 ◽  
Author(s):  
Li Xia Ying ◽  
Jun Tao Yang ◽  
Ying Liu ◽  
Zhi Kun Yang ◽  
Gui Xiang Wang

In order to improve the self-lubricating and anti-wear performances of metal surfaces in the extreme conditions, Sn-Ni-PTFE composite coating was electrodeposited on metal surfaces from the electrolyte containing PTFE emulsion. Microstructure, microhardness and tribological properties of the Sn-NiPTFE composite coatings were investigated. Results show that Sn-Ni-PTFE composite coating has smooth surface and fine microstructure. PTFE particles disperse uniformly in the composite coatings. Simultaneously, the incorporation of PTFE particles significantly improves the tribological performance of Sn-Ni coatings. SnNiPTFE composite coatings exhibits lower friction coefficient and better wear resistance in contrast with Sn-Ni coating.


2011 ◽  
Vol 675-677 ◽  
pp. 1245-1248
Author(s):  
Chuan Bing Huang ◽  
Ling Zhong Du ◽  
Wei Gang Zhang

In this study, two kinds of NiCr/Cr3C2-BN composite powders were prepared with individual cladding (FKBN) and low pressure spray granulation (YLBN) methods, and the derived NiCr/Cr3C2-BN coatings were fabricated by plasma spraying technology. The microstructure, mechanical and tribological properties of the two coatings were systematically investigated. Both NiCr/Cr3C2-BN coatings have relatively high adhesive strength and microhardness, but the porosity of YLBN coating is much lower than that of FKBN coating. With comparison to FKBN coating, YLBN coating showed lower friction coefficient and better wear resistance, which was attributed to the more compact microstructure and uniform distribution of BN in the coating.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 903 ◽  
Author(s):  
Zhiying Ren ◽  
Yu Yang ◽  
Youxi Lin ◽  
Zhiguang Guo

In this study, epoxy resin (EP) composites were prepared by using molybdenum disulfide (MoS2) and helical carbon nanotubes (H-CNTs) as the antifriction and reinforcing phases, respectively. The effects of MoS2 and H-CNTs on the friction coefficient, wear amount, hardness, and elastic modulus of the composites were investigated. The tribological properties of the composites were tested using the UMT-3MT friction testing machine, non-contact three-dimensional surface profilometers, and nanoindenters. The analytical results showed that the friction coefficient of the composites initially decreased and then increased with the increase in the MoS2 content. The friction coefficient was the smallest when the MoS2 content in the EP was 6%, and the wear amount increased gradually. With the increasing content of H-CNTs, the friction coefficient of the composite material did not change significantly, although the wear amount decreased gradually. When the MoS2 and H-CNTs contents were 6% and 4%, respectively, the composite exhibited the minimum friction coefficient and a small amount of wear. Moreover, the addition of H-CNTs significantly enhanced the hardness and elastic modulus of the composites, which could be applied as materials in high-temperature and high-pressure environments where lubricants and greases do not work.


2017 ◽  
Vol 32 (9) ◽  
pp. 1674-1681 ◽  
Author(s):  
Bo Li ◽  
Yimin Gao ◽  
Minmin Han ◽  
Hongjian Guo ◽  
Junhong Jia ◽  
...  

Abstract


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Dongya Zhang ◽  
Zhongwei Li ◽  
Feng Gao ◽  
Xian Wei ◽  
Yuquan Ni

Abstract In this study, composite coatings of polyvinylidene fluoride (PVDF) and epoxy resin deposited with La2O3 and MoS2 nanoparticles on the surface of a Babbitt alloy have been studied in order to improve its tribological performance. A pin-on-disc tribometer was used to evaluate the tribological properties of the Babbitt alloys with and without the composite coatings. The results showed that compared with the polymer-La2O3 composite coating, the polymer-MoS2 composite coating was more effective in reducing the friction coefficient and the wear rate of the Babbitt substrate under both dry and boundary lubrication conditions compared with the polymer-La2O3 composite coating. However, the wear rate of the Babbitt alloy with the polymer-La2O3 composite coating was lower than that of the alloy with the polymer-MoS2 composite coating. The wear scratches were analyzed using a scanning electron microscope (SEM). The worn surface of the polymer-La2O3 coating was much smoother and more continuous than that of the polymer-MoS2 coating, meanwhile transfer films were respectively detected on the pin surfaces. The addition of nanoparticles can reduce the wear rate and friction coefficient of polymer composite coating by forming a transfer film. Hence, the polymer composite coating can protect the Babbitt substrate.


Tribologia ◽  
2020 ◽  
Vol 292 (4) ◽  
pp. 51-57
Author(s):  
Małgorzata Rutkowska-Gorczyca ◽  
Anita Ptak ◽  
Marcin Winnicki

The properties of copper have been known and used for a very long time, and research has also been carried out for a long time to expand the applications of this material. One of the methods increasing the bactericidal and bacteriostatic effect of copper is modification by means of the TiO2 phase. The research was conducted in order to determine the impact of modification of copper coatings with TiO2 titanium dioxide on their tribological properties. The paper presents the results of studies on tribological wear of composite coatings applied on steel using the method of low-pressure cold gas spraying (LPCS). The tests of resistance to abrasive wear were carried out in a ball-disc combination in reciprocating motion. The analysis of the resistance to abrasive wear of the tested coatings included the determination of the impact of the pressure force on the intensity of wear and the kinetic friction coefficient of the tested friction pairs. It was found that the samples covered only with copper coatings were characterized by a higher value of friction coefficient in relation to the substrate made of AISI 316l steel. The modification of copper with the submicron particles TiO2 fraction does not increase the value of friction coefficient. The value of this parameter is maintained at a similar level regardless of the applied counterspecimen.


2011 ◽  
Vol 314-316 ◽  
pp. 74-77
Author(s):  
Cun Xiang Liu ◽  
Jun Hui Zhang ◽  
Zhao Feng Wang

The Tribological properties of FeCrNi/CBN composite coating with spraying high velocity arc is studied. Images and components and cross-section microstructure of coatings are analyzed by the means of SEM, and EDS etc. This research indicates that FeCrNi/CBN composite coatings have typical layered structure characteristic and high bond strength and hardness. Friction coefficient of coatings at room and high temperatures have “Run-up” period. With the increase of temperature, friction coefficient of coatings becomes low and wearing capacity of coatings becomes high. The adding of CBN powder highly improved the wearing capacity of coatings.


2014 ◽  
Vol 941-944 ◽  
pp. 1612-1615
Author(s):  
Rui Min Sun ◽  
Hui Zhao ◽  
Yong Heng Zhou

PAI/SiC-and PAI/SiC/PTFE-composite coatings were prepared, which were deposited on Al substrates using spraying technology to improve their surfaces performance. Friction and wear of PAI composite coatings were evaluated on a ball-on-block wear tester, and thermal properties were investigated by TG. It is found that, the friction coefficient and wear rate of PAI coatings reaches the best value when the content of SiC and PTFE is 10 wt % and 0.8wt% respectively, and the friction coefficient of the composites coatings decrease but the wear rate increase with increasing applied load; TG curves shows that the PAI composite coatings have excellent heat resistance. Furthermore, the surface of PAI coatings is perfect without bubbling, desquamating and cracking when it is heated for 2 hour at 250◦C in turn three cycles.


Sign in / Sign up

Export Citation Format

Share Document