ANALYSIS OF THE TRIBOLOGICAL PROPERTIES OF Cu-aTiO2 COMPOSITE COATINGS APPLIED BY THE COLD SPRAY METHOD

Tribologia ◽  
2020 ◽  
Vol 292 (4) ◽  
pp. 51-57
Author(s):  
Małgorzata Rutkowska-Gorczyca ◽  
Anita Ptak ◽  
Marcin Winnicki

The properties of copper have been known and used for a very long time, and research has also been carried out for a long time to expand the applications of this material. One of the methods increasing the bactericidal and bacteriostatic effect of copper is modification by means of the TiO2 phase. The research was conducted in order to determine the impact of modification of copper coatings with TiO2 titanium dioxide on their tribological properties. The paper presents the results of studies on tribological wear of composite coatings applied on steel using the method of low-pressure cold gas spraying (LPCS). The tests of resistance to abrasive wear were carried out in a ball-disc combination in reciprocating motion. The analysis of the resistance to abrasive wear of the tested coatings included the determination of the impact of the pressure force on the intensity of wear and the kinetic friction coefficient of the tested friction pairs. It was found that the samples covered only with copper coatings were characterized by a higher value of friction coefficient in relation to the substrate made of AISI 316l steel. The modification of copper with the submicron particles TiO2 fraction does not increase the value of friction coefficient. The value of this parameter is maintained at a similar level regardless of the applied counterspecimen.

2014 ◽  
Vol 1036 ◽  
pp. 452-457 ◽  
Author(s):  
Wojciech Tarasiuk ◽  
Bożena Szczucka-Lasota ◽  
Jan Piwnik ◽  
Wojciech Majewski

In this paper are presented the results of experimental studies determining the dependence of the impact of an innovative welding micro-jet method on the intensity of abrasive wear of chrome-manganese 20MnCr5. The presented method is generally used for the constructions work items matrix for the production of silicate. The results confirm that the micro-jet welding method reduces the abrasive wear intensity of about 20% compared to the steel after thermo-chemical treatment. Other parameters such as the friction coefficient and power friction show comparable value, and therefore do not have a significant impact on working conditions.


Author(s):  
Yang Lu ◽  
Jianxin Deng ◽  
Wenlong Song ◽  
Xuemu Li ◽  
Liangliang Zhang ◽  
...  

In order to improve the tribological performance of the physical vapor-deposited AlCrN coatings, molybdenum disulfide (MoS2)/poly tetra fluoroethylene (PTFE) coatings were fabricated on the AlCrN coatings surface through the thermal spraying method. The microstructure, adhesive strength, hardness, and tribological properties were investigated. Reciprocating sliding tests against SiC ball were executed with a ball-on-plate tribometer. Results showed that the adhesive strength between the AlCrN–MoS2/PTFE composite coatings and substrate was increased by about 15% compared with single AlCrN coatings. Compared with the single MoS2/PTFE coatings, the hardness of the AlCrN–MoS2/PTFE composite coatings surface was increased by about 15%. The MoS2/PTFE layer can availably reduce the friction coefficient of single AlCrN layer, and the AlCrN–MoS2/PTFE composite coatings exhibited the lowest and the most stable friction coefficient. In addition, the MoS2/PTFE layer existed on the wear track and accumulated on both the sides, which was the main reason that the friction coefficient was still lower compared with the samples without MoS2/PTFE coatings.


Author(s):  
A. Krzyżak ◽  
E. Kosicka ◽  
R. Szczepaniak ◽  
T. Szymczak

Purpose: Carbon nanotubes are used in composite materials due to the improvement of (including tribological) properties of composites, especially thermoplastic matrix composites. This demonstrates the potential of CNTs and the validity of research on determining the impact of this type of reinforcement on the composite materials under development. Design/methodology/approach: The article presents selected results of research on polymer composites made of C.E.S. R70 resin, C.E.S. H72 hardener with the addition of a physical friction modifier (CNTs) with a percentage by volume of 18.16% and 24.42%, respectively, which also acts as a reinforcement. The produced material was subjected to hardness measurements according to the Shore method and EDS analysis. The study of abrasive wear in reciprocating movement was carried out using the Taber Linear Abraser model 5750 tribotester and a precision weight. The surface topography of the composite material after tribological tests was determined using scanning electron microscopy (SEM). Some of the mentioned tests were carried out on samples made only of resin, used as the matrix of the tested polymer composite. Findings: Carbon nanotubes used in polymer matrix composites, including bisphenol A/F epoxy resin have an influence on the tribological properties of the material. The addition of carbon nanotubes contributed to a 24% increase in the Ra parameter relative to pure resin, to a level corresponding to rough grinding of steel. Research limitations/implications: The results of the tests indicate the need to continue research in order to optimize the composition of composites in terms of operating parameters of friction nodes in broadly understood aviation. Originality/value: The analysed literature did not find any studies on the impact of the addition of carbon nanotubes on epoxy resins based on bisphenol A/F. Due to the wide scope of application of such resins, the properties of such composite materials in which carbon nanotubes are the reinforcing phase have been investigated.


2011 ◽  
Vol 314-316 ◽  
pp. 74-77
Author(s):  
Cun Xiang Liu ◽  
Jun Hui Zhang ◽  
Zhao Feng Wang

The Tribological properties of FeCrNi/CBN composite coating with spraying high velocity arc is studied. Images and components and cross-section microstructure of coatings are analyzed by the means of SEM, and EDS etc. This research indicates that FeCrNi/CBN composite coatings have typical layered structure characteristic and high bond strength and hardness. Friction coefficient of coatings at room and high temperatures have “Run-up” period. With the increase of temperature, friction coefficient of coatings becomes low and wearing capacity of coatings becomes high. The adding of CBN powder highly improved the wearing capacity of coatings.


Tribologia ◽  
2018 ◽  
Vol 280 (4) ◽  
pp. 157-163
Author(s):  
Sławomir ZIMOWSKI ◽  
Marcin KOT ◽  
Tomasz MOSKALEWICZ

Nanocomposite carbon coatings composed of a nanocrystalline phase and an amorphous carbon matrix (a-C or a-C:H) are an important group of coatings for tribological applications, especially if low friction is desired. Strong adhesion between the coating and the substrate as well as the ability to carry load are particularly important in ensuring the durability of the system. In this paper, the impact of a reinforcing phase in the form of hard carbides of chromium, titanium and tungsten (MeC) on the micromechanical and tribological properties of MeC/a-C coatings were analysed. The microhardness and modulus of elasticity using the indentation method and adhesion of these coatings to the substrate in scratch tests were determined. On the basis of tribological tests, the friction coefficient and wear rate of the coatings were determined during nonlubricated sliding contact with an alumina ball. The tested nanocomposite coatings showed very good sliding properties and wear resistance. The nc-WC/a-C and nc-TiC/a-C coatings exhibit the smallest coefficient of friction (below 0.1) and the highest wear resistance. The presence of nanocrystalline carbides in the amorphous carbon matrix limits the propagation of cracks in the coatings and allows the higher load carrying capacity.


Tribologia ◽  
2019 ◽  
Vol 284 (2) ◽  
pp. 15-25
Author(s):  
Henryk Bąkowski ◽  
Antoni John ◽  
Łukasz Łomozik ◽  
Zbigniew Stanik

The article presents, in a complex way, the impact of most essential operational factors upon tribological properties such as the wear and the friction coefficient being the main causes of fatigue contact wear in the rolling-sliding contact both in the presence and absence of water. Operational curves have been developed to predict the character and intensity of the wear in various operational conditions. This seems crucial for the improvement of the safety of rail vehicles.


2019 ◽  
Vol 72 (1) ◽  
pp. 151-156
Author(s):  
Kemin Li ◽  
Zhifu Huang ◽  
Hanwen Ma ◽  
Shaofei Wang ◽  
Chaofeng Qin ◽  
...  

Purpose The purpose of this study was to investigate the tribological properties of bulk Fe2B with pre-oxidation treatment. Design/methodology/approach Bulk Fe2B was oxidized in an electric box furnace with a soaking time of 9 min under 750°C in air. Then, the tribological experiments were carried out on an UMT-Tribolab tester. Findings The oxide layer was composed of Fe, Fe2O3, Fe3O4, B2O3 and H3BO3. The oxidative direction of bulk Fe2B was perpendicular to the sample surface. But, the oxidative direction of Fe2B crystals was irregular. At 0.1 m/s, the friction coefficient was the lowest. The effects of shortening the running-in period of friction and reducing the friction coefficient by pre-oxidation treatment at 0.1 m/s were remarkable. Nevertheless, the effect of pre-oxidation treatment was futile at 0.2 m/s. Wear mechanisms of oxidized Fe2B mainly were adhesive and abrasive wear. Originality/value The effects of shortening the running-in period of friction and reducing the friction coefficient by pre-oxidation treatment were remarkable.


Tribologia ◽  
2016 ◽  
Vol 268 (4) ◽  
pp. 29-39 ◽  
Author(s):  
Dymitr CAPANIDIS

This paper presents the experimental determination of the effect of hardness of the polyurethane (PUR) in a form of the elastomer foam used in various parts of machines or appliances subjected to intensive abrasive wear. Such elements, among others, are static and dynamic technical seals, bumpers, shock-absorbing parts in joints of machine components, and elements of transport equipment in mining or in aggregate and mineral processing [L. 1–3]. Intensive abrasive wear also concerns parts of agricultural and construction machines, road transport, and transport packaging, as well as protective coatings, housing or shields of various machines, and equipment elements [L. 4, 5]. An increase in the abrasive wear resistance of directly determines an increase in the durability and operational reliability of machines and equipment [L. 6]. The hardness of the elastomeric polyurethane influences its physicomechanical and tribological properties [L. 7]. So far, relatively few works have focused on research into the effect of various factors, including the hardness of PUR on the tribological properties of PUR. The aim of this study is to broaden knowledge on the impact of the polyurethane hardness on its resistance to abrasive wear.


2014 ◽  
Vol 936 ◽  
pp. 2063-2067
Author(s):  
Chen Yue ◽  
Shang Guan Bao ◽  
Ying Yu Huang

The friction and wear properties of cast iron with different graphite morphologies and matrix microstructure were investigated at high speed dry sliding against GCr15 steel on the MMS-1G high-speed tribometer apparatus. The various wear micro-mechanisms and tribo-metallographic phases were studied by using scanning electron microscopy. The results show that as friction material, vermicular iron exhibits excellent comprehensive tribological properties. The friction coefficient of cast iron sliding against GCr15 decreases while the wear rate increases with the increase of sliding speed, friction coefficient and wear rate decline with the increase of pearlite content. Under the experimental condition, the main wear mechanisms of flake iron are abrasive wear, of vermicular iron are abrasive wear and oxidative wear and of nodular iron are oxidative wear, abrasive wear and fatigue spalling.


2018 ◽  
Vol 70 (8) ◽  
pp. 1422-1430
Author(s):  
Ming Qiu ◽  
Rui Zhang ◽  
Yingchun Li ◽  
Hui Du ◽  
Xiao Xu Pang

PurposeThe MoS2/graphite composite coatings modified by La2O3through spraying technique were successfully prepared on the inner rings of spherical plain bearings. As a comparison, unmodified coatings were also prepared. This paper aims to study the La-modified MoS2/graphite composite coating experimentally and improve the tribological performance of self-lubricating spherical plain bearings.Design/methodology/approachThe performance of La2O3toward the friction coefficient, temperature rise and wear rate of the coatings was studied by a self-made tribo-tester under different swing cycles. And the texture, surface morphology and element composition of the coatings were characterized by scanning electron microscope, energy dispersive spectroscopy and X-ray diffractometry.FindingsThe additives La2O3refined the coatings’ microstructure and improved the tribological properties of the coatings. The oxidation of Mo + 4 to Mo + 6 was effectively inhibited. And the amount of abrasive grains, peeling pits and local cracks on the coatings surface decreased and homogeneous lubricating films formed, which were attributed to the existence of La2O3. The wear mechanisms of unmodified coatings were severe abrasive wear, adhesive wear and delamination wear. However, it exhibited superior wear resistance of the La-modified coatings to unmodified coatings, presenting slight abrasive wear and adhesive wear. The service life of bearings was prolonged under the protection of the modified coatings.Originality/valueThe paper proposed a new modified MoS2/Graphite composite coating for the self-lubricating spherical plain bearings. The investigation on the friction, wear and temperature increase behaviors and the wear mechanisms of the coatings are beneficial to prolonging the service life of the self-lubricating spherical plain bearings.


Sign in / Sign up

Export Citation Format

Share Document