On the interest of a semi-empirical model for the tooth friction coefficient in gear transmissions

Author(s):  
Romain Quiban ◽  
Nicolas Grenet De Bechillon ◽  
Thomas Touret ◽  
Pierre Navet ◽  
Yasser Diab ◽  
...  

Accurate modelling of friction coefficient is of primary importance in efficiency, vibration and failure analyses of enclosed gear drives. After showing the influence of surface/lubricant interactions on friction, the authors used a semi-empirical model which can take all these aspects into account. Lubricant is modelled as an Eyring–Reynolds fluid and rough surfaces are described with two parameters via a stochastic approach. A specific two-disc machine is used to perform series of friction measurements on smooth and rough discs. Smooth discs allow to operate under full film lubrication and to measure a reference shear stress of lubricant, whereas rough discs reproduce gear tooth roughness and generate a representative value of friction on asperities. The purpose of this present paper is to describe calculations of this physical-based friction coefficient model and to present the experimental process. On the basis of new results, the impact of a surface finishing process is assessed as well as the consequence of calculating friction coefficient based on oil injection instead of local bulk temperature.

Author(s):  
A. V. Morozov

This study is devoted to experimental research of rubber friction in sliding contact with rough surface. Influence of pressure, bulk temperature and sliding velocity on friction coefficient in dry conditions is analysed for two rubber compounds with different viscoelastic properties. Grosch method of master curves construction is used for analysing of friction measurements. Such analysis is performed for different temperatures and velocities at constant normal load. The obtained friction master curves are combined into a single friction map. The friction maps demonstrate the influence of viscoelastic properties of rubber on friction coefficient in dry rough contact. Also friction maps show the influence of adhesion and hysteresis contributions into friction coefficient for different rubber compounds.


2015 ◽  
Vol 737 ◽  
pp. 788-793 ◽  
Author(s):  
Yuan Peng Cheng ◽  
Zi Li Li ◽  
Qian Qian Liu

Experimental studies show that under special conditions, oils in corrosion environment have some inhibiting effect on CO2corrosion behavior of gathering pipelines. Oil wetting and corrosion product film are the great difference in existent rate prediction models of sweet corrosion. The progress of CO2corrosion rate prediction including empirical model, semi-empirical model, mechanistic model and artificial neural networks model considering the impact of oil in recent years are introduced in detail, the present problems and further research directions are also discussed.


1985 ◽  
Vol 55 ◽  
Author(s):  
J-P. Hirvonen ◽  
M. Nastasi ◽  
J. R. Phillips ◽  
J. W. Mayer

ABSTRACTMultilayered samples of Ti-Pd with linearly varying compositions were irradiated by Xe ions at 600 keV. The induced microstructures were studied by using transmission electron microscopy and Rutherford backscattering. Mixing was found to be complete over the entire composition range, resulting in amorphous or amorphous plus crystalline structures except at the palladium-rich end, where a crystalline Pd-Ti solid solution was obtained. This is consistent with the high equilibrium solubility of Ti in Pd. In addition, significant coarsening of the microstructure caused by irradiation was found in this solid solution region.Friction measurements were carried out in air and water by using a polytetrafluoroethylene pin as a counterpart. In air the friction coefficient was independent of composition and microstructure after about 2000 passes. In water, however, after 600 passes the friction coefficient reached a steady-state value with a pronounced minimum over the amorphous region. This property was unchanged throughout the remaining 10000 passes.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 412
Author(s):  
Shao-Ming Li ◽  
Kai-Shing Yang ◽  
Chi-Chuan Wang

In this study, a quantitative method for classifying the frost geometry is first proposed to substantiate a numerical model in predicting frost properties like density, thickness, and thermal conductivity. This method can recognize the crystal shape via linear programming of the existing map for frost morphology. By using this method, the frost conditions can be taken into account in a model to obtain the corresponding frost properties like thermal conductivity, frost thickness, and density for specific frost crystal. It is found that the developed model can predict the frost properties more accurately than the existing correlations. Specifically, the proposed model can identify the corresponding frost shape by a dimensionless temperature and the surface temperature. Moreover, by adopting the frost identification into the numerical model, the frost thickness can also be predicted satisfactorily. The proposed calculation method not only shows better predictive ability with thermal conductivities, but also gives good predictions for density and is especially accurate when the frost density is lower than 125 kg/m3. Yet, the predictive ability for frost density is improved by 24% when compared to the most accurate correlation available.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2872
Author(s):  
Miroslav Uhrina ◽  
Anna Holesova ◽  
Juraj Bienik ◽  
Lukas Sevcik

This paper deals with the impact of content on the perceived video quality evaluated using the subjective Absolute Category Rating (ACR) method. The assessment was conducted on eight types of video sequences with diverse content obtained from the SJTU dataset. The sequences were encoded at 5 different constant bitrates in two widely video compression standards H.264/AVC and H.265/HEVC at Full HD and Ultra HD resolutions, which means 160 annotated video sequences were created. The length of Group of Pictures (GOP) was set to half the framerate value, as is typical for video intended for transmission over a noisy communication channel. The evaluation was performed in two laboratories: one situated at the University of Zilina, and the second at the VSB—Technical University in Ostrava. The results acquired in both laboratories reached/showed a high correlation. Notwithstanding the fact that the sequences with low Spatial Information (SI) and Temporal Information (TI) values reached better Mean Opinion Score (MOS) score than the sequences with higher SI and TI values, these two parameters are not sufficient for scene description, and this domain should be the subject of further research. The evaluation results led us to the conclusion that it is unnecessary to use the H.265/HEVC codec for compression of Full HD sequences and the compression efficiency of the H.265 codec by the Ultra HD resolution reaches the compression efficiency of both codecs by the Full HD resolution. This paper also includes the recommendations for minimum bitrate thresholds at which the video sequences at both resolutions retain good and fair subjectively perceived quality.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 962
Author(s):  
Andrzej Marczuk ◽  
Vasily Sysuev ◽  
Alexey Aleshkin ◽  
Petr Savinykh ◽  
Nikolay Turubanov ◽  
...  

Mixing is one of the most commonly used processes in food, animal feed, chemical, cosmetic, etc., industries. It is supposed to provide high-quality homogenous, nutritious mixtures. To provide appropriate mixing of materials while maintaining the process high efficiency and low energy consumption it is crucial to explore and describe the material flow caused by the movement of mixing elements and the contact between particles. The process of mixing is also affected by structural features of the machine components and the mixing chamber, speed of mixing, and properties of the mixed materials, such as the size of particles, moisture, friction coefficients. Thus, modeling of the phenomena that accompany the process of mixing using the above-listed parameters is indispensable for appropriate implementation of the process. The paper provides theoretical power calculations that take into account the material speed change, the impact of the material friction coefficient on the screw steel surface and the impact of the friction coefficient on the material, taking into account the loading height of the mixing chamber and the chamber loading value. Dependencies between the mixer power and the product degree of fineness, rotational speed of screw friction coefficients, the number of windings per length unit, and width of the screw tape have been presented on the basis of a developed model. It has been found that power increases along with an increase in the value of these parameters. Verification of the theoretical model indicated consistence of the predicted power demand with the power demand determined in tests performed on a real object for values of the assumed, effective loading, which was 65–75%.


2020 ◽  
Vol 12 (2) ◽  
pp. 220 ◽  
Author(s):  
Han Xiao ◽  
Fenzhen Su ◽  
Dongjie Fu ◽  
Qi Wang ◽  
Chong Huang

Long time-series monitoring of mangroves to marine erosion in the Bay of Bangkok, using Landsat data from 1987 to 2017, shows responses including landward retreat and seaward extension. Quantitative assessment of these responses with respect to spatial distribution and vegetation growth shows differing relationships depending on mangrove growth stage. Using transects perpendicular to the shoreline, we calculated the cross-shore mangrove extent (width) to represent spatial distribution, and the normalized difference vegetation index (NDVI) was used to represent vegetation growth. Correlations were then compared between mangrove seaside changes and the two parameters—mangrove width and NDVI—at yearly and 10-year scales. Both spatial distribution and vegetation growth display positive impacts on mangrove ecosystem stability: At early growth stages, mangrove stability is positively related to spatial distribution, whereas at mature growth the impact of vegetation growth is greater. Thus, we conclude that at early growth stages, planting width and area are more critical for stability, whereas for mature mangroves, management activities should focus on sustaining vegetation health and density. This study provides new rapid insights into monitoring and managing mangroves, based on analyses of parameters from historical satellite-derived information, which succinctly capture the net effect of complex environmental and human disturbances.


Sign in / Sign up

Export Citation Format

Share Document